Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T02:35:10.395Z Has data issue: false hasContentIssue false

9 - Sea-ice modelling

Published online by Cambridge University Press:  16 October 2009

Gregory M. Flato
Affiliation:
Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada
Jonathan L. Bamber
Affiliation:
University of Bristol
Antony J. Payne
Affiliation:
University of Bristol
Get access

Summary

Representing the mass balance of sea ice involves solving a coupled, non-linear set of equations describing ice motion (momentum balance), thermodynamic growth and melt (energy balance) and the transport and redistribution of ice thickness (area and volume conservation). A detailed description of the theory underlying sea-ice models is provided in Chapter 7, and so only a brief review is provided here. It is the case that approximations employed to represent many important processes, both in stand-alone ice models and in more comprehensive global climate models, lead to errors or uncertainties in simulated sea-ice behaviour. Nonetheless, because of the scarcity of direct observations related to sea-ice mass balance, models provide valuable insight into the mean state of the ice cover and its historical and projected future changes.

Brief overview of sea-ice models

The sea-ice mass balance involves local growth and melt, horizontal transport and deformation. These processes alter the local mean thickness (ice volume per unit area) and involve exchanges of mass (fresh water) and energy with the atmosphere and ocean. Figure 9.1 provides an illustration, for the Arctic, based on results of a stand-alone sea-ice model (Hilmer, Harder and Lemke, 1998). In this figure the annual mean ice transport is indicated by the vectors, the annual mean ice thickness by the solid contours and the net freezing rate (net ice growth minus ice melt – directly proportional to the salt flux delivered to the ocean surface) by the coloured shading.

Type
Chapter
Information
Mass Balance of the Cryosphere
Observations and Modelling of Contemporary and Future Changes
, pp. 367 - 390
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbetter, T. E., Curry, J. A. and Maslanik, J. A. 1999. Effects of rheology and ice thickness distribution in a dynamic-thermodynamic sea ice model. J. Phys. Oceanography 29, 2656–702.0.CO;2>CrossRefGoogle Scholar
Battisti, D. S., Bitz, C. M. and Moritz, R. E. 1997. Do general circulation models underestimate the natural variability in the Arctic climate?J. Climate 10, 1909–202.0.CO;2>CrossRefGoogle Scholar
Bitz, C. M. and Lipscomb, W. H. 1999. An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. 104, 15 669–77CrossRefGoogle Scholar
Bitz, C. M., Fyfe, J. C. and Flato, G. M. 2002. Sea ice response to wind forcing from AMIP models. J. Climate 15, 522–362.0.CO;2>CrossRefGoogle Scholar
Bitz, C. M., Battisti, D. S., Moritz, R. E. and Besley, J. A. 1996. Low-frequency variability in the Arctic atmosphere, sea ice, and upper-ocean climate system. J. Climate 9, 394–4082.0.CO;2>CrossRefGoogle Scholar
Bitz, C. M., Holland, M. M., Weaver, A. J. and Eby, M. 2001. Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res. 106, 2441–64CrossRefGoogle Scholar
Björk, G. 1997. The relation between ice deformation, oceanic heat flux, and the ice thickness distribution in the Arctic Ocean. J. Geophys. Res. 102, 18 681–98CrossRefGoogle Scholar
Campbell, W. J. 1965. The wind-driven circulation of ice and water in a polar ocean. J. Geophys. Res. 70, 3279–301CrossRefGoogle Scholar
Cavalieri, D. J., Gloersen, P., Parkinson, C. L., Comiso, J. C. and Zwally, H. J. 1997. Observed hemispheric asymmetry in global sea ice changes. Science 278, 1104–6CrossRefGoogle Scholar
Chapman, W. L., Welch, W. J., Bowman, K. P., Sacks, J. and Walsh, J. E. 1994. Arctic sea ice variability: model sensitivities and a multi-decadal simulation. J. Geophys. Res. 99, 919–35CrossRefGoogle Scholar
Coon, M. D., Knoke, G. S., Echert, D. C. and Pritchard, R. S. 1998. The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law. J. Geophys. Res. 103, 21 915–25CrossRefGoogle Scholar
Curry, J. A., Schramm, J. L. and Ebert, E. E. 1995. Sea ice-albedo climate feedback mechanism. J. Climate 8, 240–72.0.CO;2>CrossRefGoogle Scholar
Dickson, R. R., Meinke, J., Malmberg, S. A. and Lee, A. J. 1988. The ‘great salinity anomaly’ in the northern North Atlantic 1968–1982. Prog. Oceanography 20, 103–51CrossRefGoogle Scholar
Ebert, E. E. and Curry, A. J. 1993. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res. 98, 10 085–110CrossRefGoogle Scholar
Fichefet, T. and Morales Maqueda, M. A. 1997. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. 102, 12 609–46CrossRefGoogle Scholar
Fichefet, T. and Morales Maqueda, M. A. 1999. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn. 15, 251–68CrossRefGoogle Scholar
Fichefet, T., Goosse, H. and Morales Maqueda, M. A. 1998. On the large-scale modelling of sea ice and sea ice–ocean interactions. In Chassignet, E. P. and Verron, J., eds., Ocean Modeling and Parameterization. Dordrecht, Kluwer, pp. 399–422
Fichefet, T., Tartinville, B. and Goosse, H. 2000. Sensitivity of the Antarctic sea ice to thermal conductivity. Geophys. Res. Lett. 27, 401–4CrossRefGoogle Scholar
Flato, G. M. 1995. Spatial and temporal variability of Arctic ice thickness. Ann. Glaciol. 21, 323–9CrossRefGoogle Scholar
Flato, G. M. 1996. Parameterizing the strength of Arctic sea ice. Proceedings of the ACSYS Conference on the Dynamics of the Arctic Climate System, Göteborg, Sweden. November 7–10, 1994. World Climate Research Programme, WMO/TD no. 760, pp. 278–82
Flato, G. M. 1998. The sensitivity of models in the SIMIP hierarchy to thermodynamic perturbations. Proc of the ACSYS Conference on Polar Processes and Global Climate, Orcas Island, USA, November 3–6, 1997. World Climate Research Programme, WMO/TD no. 908, pp. 51–3
Flato, B. M. and Boer, G. J. 2001. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–8CrossRefGoogle Scholar
Flato, G. M. and Brown, R. D. 1996. Variability and climate sensitivity of landfast Arctic sea ice. J. Geophys. Res. 101, 25 767–77CrossRefGoogle Scholar
Flato, G. M. and Hibler, W. D. III. 1992. Modeling pack ice as a cavitating fluid. J. Phys. Oceanography 22, 626–512.0.CO;2>CrossRefGoogle Scholar
Flato, G. M. and Hibler, W. D. III. 1995. Ridging and strength in modeling the thickness distribution of Arctic sea ice. J. Geophys. Res. 100, 18 611–26CrossRefGoogle Scholar
Geiger, C. A., Hibler, W. D. III and Ackley, S. F. 1998. Large-scale sea ice drift and deformation: comparison between models and observations in the western Weddell Sea during 1992. J. Geophys. Res. 103, 21 893–913CrossRefGoogle Scholar
Gloersen, P., Campell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L. and Zwally, H. J. 1992. Arctic and Antarctic sea ice, 1978–1987: satellite passive microwave observations and analysis. NASA SP-511, 290 pp
Gordon, C.et al. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn. 16, 147–68CrossRefGoogle Scholar
Gray, J. M. N. T. and Morland, L. W. 1994. A two-dimensional model for the dynamics of sea ice. Phil. Trans. Roy. Soc. London A 347, 219–90CrossRefGoogle Scholar
Häkkinen, S. 1993. An Arctic source for the great salinity anomaly: a simulation of the Arctic ice-ocean system for 1955–1975. J. Geophys. Res. 98, 16 397–410CrossRefGoogle Scholar
Häkkinen, S, and Mellor, G. L. 1990. One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model. J. Geophys. Res. 95, 15 959–69CrossRefGoogle Scholar
Harder, M. and Fischer, H. 1999. Sea ice dynamics in the Weddell Sea simulated with an optimized model. J. Geophys. Res. 104, 11 151–62CrossRefGoogle Scholar
Heil, P. and Hibler, W. D. III. 2002. Modeling the high-frequency component of Arctic sea-ice drift and deformation, J. Phys. Oceanography 32, 3039–572.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D. III. 1974. Differential sea ice drift. IV: comparison of mesoscale strain measurements to linear drift theory predictions. J. Glaciol. 13, 457–71CrossRefGoogle Scholar
Hibler, W. D. III. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanography 9, 817–462.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D. III. 1980. Modeling a variable thickness sea ice cover. Month. Weather Rev. 108, 1943–732.0.CO;2>CrossRefGoogle Scholar
Hibler, W. D. III. 1984. The role of sea ice dynamics in modeling CO2 increases. Climate Processes and Climate Sensitivity. Geophysical Monograph 29. American Geophysical Union, pp. 238–53
Hibler, W. D. III. 1986. Ice dynamics. In Untersteiner, N., ed., Geophysics of Sea Ice. New York, Plenum Press, pp. 577–640
Hibler, W. D. III and Flato, G. M. 1992. Sea ice models. In Trenberth, K. E., ed., Climate System Modeling. Cambridge University Press, pp. 413–36
Hibler, W. D. III and Schulson, E. M. 2000. On modelling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res. 105, 17 105–20CrossRefGoogle Scholar
Hibler, W. D. III and Walsh, J. E. 1982. On modeling seasonal and interannual fluctuations of Arctic sea ice. J. Phys. Oceanography 12, 1514–232.0.CO;2>CrossRefGoogle Scholar
Hilmer, M. and Jung, T. 2000. Evidence for a recent change in the link between the North Atlantic oscillation and Arctic sea ice export. Geophys. Res. Lett. 27, 989–92CrossRefGoogle Scholar
Hilmer, M. and Lemke, P. 2000. On the decrease of Arctic sea ice volume. Geophys. Res. Lett. 27, 3751–4CrossRefGoogle Scholar
Hilmer, M., Harder, M. and Lemke, P. 1998. Sea ice transport: a highly variable link between Arctic and North Atlantic. Geophys. Res. Lett. 25, 3359–62CrossRefGoogle Scholar
Holland, D. M., Mysak, L. A. and Manak, D. K. 1993. Sensitivity study of a dynamic thermodynamic sea ice model. J. Geophys. Res. 98, 2561–86CrossRefGoogle Scholar
Holland, M. M. 1998. The impact of the ice thickness distribution on simulated Arctic budgets and climate. Proceeding of the ACSYS Conference on Polar Processes and Global Climate, Orcas Island, USA, November 3–6, 1997. World Climate Research Programme, WMO/TD no. 908, pp. 93–5
Holland, M. M. and Curry, J. A. 1999. The role of physical processes in determining the interdecadal variability of central Arctic sea ice. J. Climate 12, 3319–302.0.CO;2>CrossRefGoogle Scholar
Holloway, G. and Sou, T. 2002. Is Arctic sea ice rapidly thinning?J. Climate 15, 1691–17012.0.CO;2>CrossRefGoogle Scholar
Hopkins, M. A. 1994. On the ridging of intact lead ice. J. Geophys. Res. 99, 16 351–60CrossRefGoogle Scholar
Hopkins, M. A. and Hibler, W. D. III. 1991. On the ridging of a thin sheet of lead ice. Ann. Glaciol. 15, 81–6CrossRefGoogle Scholar
Hunke, E. C. and Dukowicz, J. K. 1997. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanography 27, 1849–672.0.CO;2>CrossRefGoogle Scholar
Ip, C. F., Hibler, W. D. III and Flato, G. M. 1991. On the effect of rheology on seasonal sea-ice simulations. Ann. Glaciol. 15, 17–25CrossRefGoogle Scholar
Johns, T. C.et al. 1997. The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dyn. 13, 103–34CrossRefGoogle Scholar
Kattenberg, A. et al. 1996. Climate models – projections of future climate. In Houghton, J. et al., eds., Climate Change 1995. The Science of Climate Change. Cambridge University Press, pp. 285–358
Kreyscher, M., Harder, M. and Lemke, P. 1997. First results of the sea-ice model intercomparison project (SIMIP). Ann. Glaciol. 25, 8–11CrossRefGoogle Scholar
Kreyscher, M., Harder, M., Lemke, P. and Flato, G. M. 2000. Results of the sea ice model intercomparison project: evaluation of sea-ice rheology schemes for use in climate simulations. J. Geophys. Res. 105 (C5), 11 299–320CrossRefGoogle Scholar
Kwok, R. and Rothrock, D. A. 1999. Variability of Fram Strait ice flux and North Atlantic oscillation. J. Geophys. Res. 104, 5177–89CrossRefGoogle Scholar
Lipscomb, W. H. 2001. Remapping the thickness distribution in sea ice models. J. Geophys. Res. 106, 13 989–14000CrossRefGoogle Scholar
Maslowski, W., Newton, B., Schlosser, P., Semtner, A. and Martinson, D. 2000. Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett. 27, 3743–6CrossRefGoogle Scholar
Maykut, G. A. 1978. Energy exchange over young sea ice in the central Arctic. J. Geophys. Res. 83, 3646–58CrossRefGoogle Scholar
Maykut, G. A. and Untersteiner, N. 1971. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76, (6) 1550–75CrossRefGoogle Scholar
Meehl, G. A., Boer, G. J., Covey, C., Latif, M. and Stouffer, R. J. 1997. Intercomparison makes for a better climate model. EOS, Trans. Am. Geophys. Union 78, 445–6CrossRefGoogle Scholar
Meier, W. N., Maslanik, J. A. and Fowler, C. W. 2000. Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J. Geophys. Res. 105, 3339–56CrossRefGoogle Scholar
Moritz, R. E. and Stern, H. L. 2001. Relationships between geostrophic winds, ice strain rates and the piecewise rigid motions of pack ice. In Dempsey, J. P. and Shen, H. H., eds., Proceedings of the IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, Fairbanks, June 13–16, 2000. Dordrecht, Kluwer
Moritz, R. E. and Ukita, J. 2000. Geometry and the deformation of pack ice, Part I: a simple kinematic model. Ann. Glaciol. 31, 313–22CrossRefGoogle Scholar
Pollard, D. and Thompson, S. L. 1994. Sea-ice dynamics and CO2 sensitivity in a global climate model. Atmos.-Ocean 32, 449–63CrossRefGoogle Scholar
Polyakov, I. V., Proshutinsky, A. Y. and Johnson, M. A. 1999. Seasonal cycles in two regimes of Arctic climate. J. Geophys. Res. 104, 25 761–88CrossRefGoogle Scholar
Polyakov, I. V.et al. 1998. Coupled sea ice-ocean model of the Arctic Ocean. J. Offshore Mech. & Arctic Engrng. 120, 77–84CrossRefGoogle Scholar
Pritchard, R. S. 1975. An elastic-plastic constitutive law for sea ice. J. Appl. Mech. 43E 379–84CrossRefGoogle Scholar
Pritchard, R. S., Coon, M. D. and McPhee, M. G. 1977. Simulation of sea ice dynamics during AIDJEX. J. Pressure Vessel Technol. 99J, 491–7CrossRefGoogle Scholar
Proshutinsky, A. Y. and Johnson, M. 1997. Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. 102, 12 493–514CrossRefGoogle Scholar
Proshutinsky, A. Y., Polyakov, I. V. and Johnson, M. A. 1999. Climate states and variability of Arctic ice and water dynamics during 1946–1997. Polar Res. 18, 135–42Google Scholar
Rind, D., Healy, R., Parkinson, C. and Martinson, D. 1995. The role of sea ice in 2 × CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent. J. Climate 8, 449–632.0.CO;2>CrossRefGoogle Scholar
Rothrock, D. A. 1975. The energetics of plastic deformation of pack ice by ridging, J. Geophys. Res. 80, 4514–19CrossRefGoogle Scholar
Rothrock, D. A., Yu, Y. and Maykut, G. A. 1999. Thinning of Arctic sea-ice cover. Geophys. Res. Lett. 26, 3469–72CrossRefGoogle Scholar
Schramm, J. L., Flato, G. M. and Curry, J. A. 2000. Toward modeling of enhanced basal melting in ridge keels. J. Geophys. Res. 105, 14 081–92CrossRefGoogle Scholar
Schramm, J. L., Holland, M. M., Curry, J. A. and Ebert, E. E. 1997. Modeling the thermodynamics of a sea ice thickness distribution, 1. Sensitivity to ice thickness resolution. J. Geophys. Res. 102, 23 079–91CrossRefGoogle Scholar
Semtner, A. J. Jr. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanography 6, 379–892.0.CO;2>CrossRefGoogle Scholar
Shine, K. P. and Henderson-Sellers, A. 1985. The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J. Geophys. Res. 90, 2243–50CrossRefGoogle Scholar
Steele, M. and Flato, G. M. 2000. Sea ice growth melt and modeling: a survey. In Lewis, E. L. et al., eds., The Freshwater Budget of the Arctic Ocean. Dordrecht, Kluwer, pp. 549–87
Steele, M., Zhang, J., Rothrock, D. and Stern, H. 1997. The force balance of sea ice in a numerical model of the Arctic Ocean. J. Geophys. Res. 102, 21 061–79CrossRefGoogle Scholar
Stössel, A., Lemke, P. and Owens, W. B. 1990. Coupled sea ice – mixed layer simulations for the Southern Ocean. J. Geophys. Res. 95, 9539–55CrossRefGoogle Scholar
Thomas, D., Martin, S., Rothrock, D. and Steele, M. 1996. Assimilating satellite concentration data into an Arctic sea ice mass balance model, 1979–1985. J. Geophys. Res. 101, 20 849–68CrossRefGoogle Scholar
Thorndike, A. S. 1987. A random discontinuous model of sea ice motion. J. Geophys. Res. 92, 6515–30CrossRefGoogle Scholar
Thorndike, A. S., Rothrock, D. A., Maykut, G. A. and Colony, R. 1975. The thickness distribution of sea ice. J. Geophys. Res. 80, 4501–13CrossRefGoogle Scholar
Tremblay, L.-B. and Mysak, L. A. 1997. Modeling sea ice as a granular material, including the dilatancy effect. J. Phys. Oceanography 27, 2342–602.0.CO;2>CrossRefGoogle Scholar
Vinnikov, K. Y.et al. 1999. Global warming and northern hemisphere sea ice extent. Science 286, 1934–7CrossRefGoogle ScholarPubMed
Wadhams, P. 1990. Evidence for thinning of the Arctic ice cover north of Greenland. Nature 345, 795–7CrossRefGoogle Scholar
Walsh, J. E., Hibler, W. D. III and Ross, B. 1985. Numerical simulation of northern hemisphere sea ice variability, 1951–1980. J. Geophys. Res. 90, 4847–65CrossRefGoogle Scholar
Zhang, J., Rothrock, D. and Steele, M. 2000. Recent changes in Arctic sea ice: the interplay between ice dynamics and thermodynamics. J. Climate 13, 3099–1142.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×