Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T02:05:56.344Z Has data issue: false hasContentIssue false

32 - Neutron star kicks and supernova asymmetry

Published online by Cambridge University Press:  11 August 2009

D. Lai
Affiliation:
Center for Radiophysics and Space Research, Department of Astronomy Cornell University, Ithaca, NY 14853
Peter Höflich
Affiliation:
University of Texas, Austin
Pawan Kumar
Affiliation:
University of Texas, Austin
J. Craig Wheeler
Affiliation:
University of Texas, Austin
Get access

Summary

Abstract

Observations over the last decade have shown that neutron stars receive a large kick velocity (of order a few hundred to a thousand km s-1) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino — magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed.

Evidence for neutron star kicks and supernova asymmetry

It has long been recognized that neutron stars (NSs) have space velocities much greater than their progenitors'. A natural explanation for such high velocities is that supernova (SN) explosions are asymmetric, and provide kicks to the nascent NSs. Evidence for NS kicks and NS asymmetry has recently become much stronger. The observations that support (or even require) NS kicks fall into three categories:

Large NS Velocities (≫ the progenitors' velocities ∼30 km s-1):

The study of pulsar proper motion give a mean birth velocity 200–500 km s-1 (Lorimer et al. 1997; Hansen & Phinney 1997; Cordes & Chernoff 1998; Arzoumanian et al. 2002), with possibly a significant population having V ≳ 1000 km s-1. While velocity of ∼100 km s-1 may in principle come from binary breakup in a supernova (without kick), higher velocities would require exceedingly tight presupernova binary.[…]

Type
Chapter
Information
Cosmic Explosions in Three Dimensions
Asymmetries in Supernovae and Gamma-Ray Bursts
, pp. 276 - 284
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmedov, E. K., Lanza, A., & Sciama, D. W. 1997, Phys. Rev. D, 56, 6117CrossRef
Akiyama, S., et al. 2003, ApJ, 584, 954CrossRef
Arras, P., & Lai, D. 1999a, ApJ, 519, 745CrossRef
Arras, P., & Lai, D. 1999b, Phys. Rev. D60, 043001
Arzoumanian, Z., Chernoff, D. F., & Cordes, J. M. 2002, ApJ, 568, 289CrossRef
Asida, S. M., & Arnett, D. 2000, ApJ, 545, 435CrossRef
Buras, R., et al. 2003, Phys. Rev. Lett. 90, 241101CrossRef
Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830CrossRef
Burrows, A., & Hayes, J. 1996, Phys. Rev. Lett., 76, 352CrossRef
Burrows, A., & Thompson, T. A. 2002, astro-ph/0210212
Chatterjee, S., & Cordes, J. M. 2002, ApJ, 575, 407CrossRef
Colpi, M., & Wasserman, I. 2002, ApJ, 581, 1271CrossRef
Cordes, J. M., Romani, R. W., & Lundgren, S. C. 1993, Nature, 362, 133CrossRef
Davies, M. B., et al. 2002, ApJ, 579, L63CrossRef
Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9CrossRef
Fryer, C., Burrows, A., & Benz, W. 1998, ApJ, 498, 333CrossRef
Fryer, C. L., & Heger, A. 2000, 541, 1033
Fryer, C. L., & Warren, M. S. 2003, ApJ, in press (astro-ph/0309539)
Fuller, G. M., et al. 2003, astro-ph/0307267
Goldreich, P., Lai, D., & Sahrling, M. 1996, in “Unsolved Problems in Astrophysics”, ed. J. N. Bahcall and J. P. Ostriker (Princeton Univ. Press)
Grasso, D., Nunokawa, H., & Valle, J. W. F. 1998, Phys. Rev. Lett., 81, 2412CrossRef
Hansen, B. M. S., & Phinney, E. S. 1997, MNRAS, 291, 569CrossRef
Heger, A.et al. 2001, ApJ, 560, 307CrossRef
Herant, M., et al. 1994, ApJ, 435, 339CrossRef
Harrison, E. R., & Tademaru, E. 1975, ApJ, 201, 447CrossRef
Iben, I., & Tutukov, A. V. 1996, ApJ, 456, 738CrossRef
Israelian, G, et al. 1999, Nature, 401, 6749 GRO J1655–40CrossRef
Janka, H.-T., & Müller, E. 1996, A&A, 306, 167
Janka, H.-T., & Raffelt, G. G. 1998, Phys. Rev. D59, 023005
Janka, H.-Th., et al. 2002, in “Core Collapse of Massive Stars”(astro-ph/0212316)
Kaspi, V. M., et. al. 1996, Nature, 381, 583CrossRef
Khokhlov, A. M., et al. 1999, ApJ, 524, L107CrossRef
Kramer, M. 1998, ApJ, 509, 856CrossRef
Kumar, P., & Quataert, E. J. 1997, 479, L51
Kusenko, A., & Segré, G. 1996, Phys. Rev. Lett., 77, 4872CrossRef
Lai, D. 1996, ApJ, 466, L35CrossRef
Lai, D. 2000, ApJ, 540, 946CrossRef
Lai, D., Bildsten, L., & Kaspi, V. M. 1995, ApJ, 452, 819CrossRef
Lai, D., Chernoff, D. F., & Cordes, J. M. 2001, ApJ, 549, 1111CrossRef
Lai, D., & Goldreich, P. 2000, ApJ, 535, 402CrossRef
Lai, D., & Qian, Y.-Z. 1998, ApJ, 505, 844CrossRef
Lorimer, D. R., Bailes, M., & Harrison, P. A. 1997, MNRAS, 289, 592CrossRef
Mezzacappa, A., et al. 1998, ApJ, 495, 911CrossRef
Orosz, J.et al. 2001, ApJ, 555, 489CrossRef
Ott, C. D., et al. 2004, ApJ, 600 (astro-ph/0307472)CrossRef
Pavlov, G. G., et al. 2001, ApJ, 552, L129CrossRef
Pfahl, E., et al. 2002, ApJ, 574, 364CrossRef
Podsiadlowski, Ph., et al. 2002, ApJ, submitted (astro-ph/0109244)
Rampp, M., Müller, E., & Ruffert, M. 1998, A&A, 332, 969
Romani, R. W., & Ng, C.-Y. 2003, ApJ, 585, L41CrossRef
Scheck, L.et al. 2003, PRL, submitted (astro-ph/0307352)
Tauris, T., et al. 1999, MNRAS, 310, 1165CrossRef
Thorstensen, J. R., et al. 2001, AJ, 122, 297CrossRef
Heuvel, E. P. J., & Paradijs, J. 1997, ApJ, 483, 399CrossRef
Wang, L., Baade, D., Höflich, P., & Wheeler, J. C. 2003, ApJ, 592, 457CrossRef
Weaver, T. A., & Woosley, S. E. 1993, Phys. Rep., 227, 65CrossRef
Wex, N., Kalogera, V., & Kramer, M. 2000, ApJ, 528, 401CrossRef
Wheeler, J. C., Meier, D. L., & Wilson, J. R. 2002, ApJ, 568, 807CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×