Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-29T06:57:56.021Z Has data issue: false hasContentIssue false

Unsolved problems in star formation

Published online by Cambridge University Press:  17 August 2009

C. J. Clarke
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA, UK
Mario Livio
Affiliation:
Space Telescope Science Institute, Baltimore
Stefano Casertano
Affiliation:
Space Telescope Science Institute, Baltimore
Get access

Summary

The study of star formation is currently benefiting from a wealth of new observational data, exploiting the high-sensitivity, wide-field, high-resolution capabilities of a diverse range of space and ground-based instrumentation. In parallel with this, high performance computing is enabling theorists to tackle key problems which—due to their complex geometry and non-linear nature—had long been recognized to be beyond the reach of analytical theory. In this review, rather than reporting progress in each of these areas, I will instead set out some scientific questions that one would expect to be answered before one would regard star formation as a topic that was largely solved. I have accordingly selected three areas: 1) molecular clouds and their relationship to the stars they form and to the wider galactic disk, 2) the question of the determinants of stellar mass (i.e., the IMF), and 3) the issue of protostellar disk dispersal and its relation to planet formation). For each topic, I outline areas of consensus, recent results, and discuss the key problems that can plausibly be addressed in the next five years.

Introduction

In this contribution I have selected three main issues in contemporary star-formation studies. I have chosen these themes because 1) they represent important areas of uncertainty in our current understanding, 2) they involve a synergy between theory and observation, and 3) they span the range of length scales—from planetary to galactic scales—that are involved in different aspects of the star-formation process.

Type
Chapter
Information
Planets to Cosmology
Essential Science in the Final Years of the Hubble Space Telescope: Proceedings of the Space Telescope Science Institute Symposium, Held in Baltimore, Maryland May 3–6, 2004
, pp. 13 - 34
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×