Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-31T18:33:11.192Z Has data issue: false hasContentIssue false

9 - Surface states on d-band perovskites

Published online by Cambridge University Press:  23 December 2009

Sinasi Ellialtioglu
Affiliation:
Middle East Technical University, Ankara, Turkey
Get access

Summary

When a crystalline solid is terminated by a surface new types of energy bands can form that are localized at or near the surface. A geometrically perfect surface may have “intrinsic” surface states with energies lying within the band-gap region, above or below the bulk energy bands. These surface bands have wavefunctions that decrease exponentially with increasing distance into the crystal. The further the energy of the surface state is from the bulk band-edge energy, the more rapidly its wavefunction decreases with distance from the surface. Localized surface states associated with defects such as oxygen vacancies can also occur. Such surface bands and states can play an important role in chemisorption and catalysis in transition metal oxides.

In this chapter we will review the theoretical concepts that underlie the formation of surface bands and defect states based on our empirical LCAO model. The material is essential to the understanding of more fundamental and accurate calculation methods. A comprehensive review of the experiments on transition metal-oxide surfaces is available [1], but only those relevant to doped insulating perovskites and metallic NaxWO3 will be discussed here.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×