Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T17:44:20.294Z Has data issue: false hasContentIssue false

2 - Introduction to site-specific recombination

Published online by Cambridge University Press:  06 August 2009

Makkuni Jayaram
Affiliation:
Section of Molecular Genetics and Microbiology, University of Texas at Austin
Ian Grainge
Affiliation:
Blanch Lane, South Mimms
Peter Mullany
Affiliation:
University College London
Get access

Summary

Recombination provides a means for creating genetic variety. Exchange of information within gene pools expands their diversity and enhances the choices available for natural selection to act on. Recombination can be broadly divided into two classes: the highly pervasive “homologous” recombination and the more specialized “site-specific recombination.”

HOMOLOGOUS RECOMBINATION

Before we discuss site-specific recombination, a brief overview of general (or homologous) recombination is useful for an appreciation of the distinctions between the two systems. Homologous recombination is a nearly universal mechanism employed by living organisms to reshuffle their genetic information. Within a cell, recombination can occur between two homologous chromosomes, between two sister chromatids formed by DNA replication, and between extrachromosomal elements such as plasmids or viral genomes. In eukaryotes, the rate of recombination during mitosis is relatively low and is markedly increased during meiosis. In fact, genetic exchange between homologs and chiasma formation appear to be a prerequisite for the proper reductional segregation of chromosomes and the generation of haploid gametes. The consequences of the resulting genetic configuration and the corresponding fitness contribution to an individual will be manifested directly, and almost immediately, in a haploid organism. For a diploid organism, the expression of the novel genetic makeup must await the fusion between the male and female gametes to produce a zygote. Recombination is therefore one of the forces that drive Darwinian evolution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abremski, K., Wierzbicki, A., Frommer, B., and Hoess, R. H. (1986). Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J Biol Chem 261, 391–396Google ScholarPubMed
Arciszewska, L. K., Baker, R. A., Hallet, B., and Sherratt, D. J. (2000). Coordinated control of XerC and XerD catalytic activities during Holliday junction resolution. J Mol Biol 299, 391–403CrossRefGoogle ScholarPubMed
Azaro, M. A., and Landy, A. (2002). Lambda Integrase and the lambda Int family. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 118–148CrossRefGoogle Scholar
Baker, T. A., and Mizuuchi, K. (2002). Chemical mechanisms for mobilizing DNA. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 12–23CrossRefGoogle Scholar
Barre, F.-X., and Sherratt, D. J. (2002). Xer site-specific recombination: Promoting chromosome segregation. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 149–161CrossRefGoogle Scholar
Belfort, M., Derbyshire, V., Parker, M., Cousineau, B., and Lambowitz, A. M. (2002). Mobile introns: Pathways and proteins. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 761–783CrossRefGoogle Scholar
Belfort, M., and Roberts, R. J. (1997). Homing endonucleases: Keeping the house in order. Nucleic Acids Res 25, 3379–3388CrossRefGoogle ScholarPubMed
Blakely, G. W., and Sherratt, D. J. (1996). Cis and trans in site-specific recombination. Mol Microbiol 20, 234–237CrossRefGoogle ScholarPubMed
Boocock, M. R., Zhu, X., and Grindley, N. D. (1995). Catalytic residues of gamma delta resolvase act in cis. EMBO J 14, 5129–5140Google ScholarPubMed
Broach, J. R., and Volkert, F. C. (1991). Circular DNA plasmids of yeasts: The molecular biology of the yeast Saccharomyces. Genome dynamics, protein synthesis and energetics. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), pp. 279–331Google Scholar
Buchholz, F., Angrand, P. O., and Stewart, A. F. (1998). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16, 657–662CrossRefGoogle ScholarPubMed
Burgin, A. B. Jr. (1997). Can DNA topoisomerases be ribonucleases?Cell 91, 873–874CrossRefGoogle ScholarPubMed
Carrasco, C. D., Buettner, J. A., and Golden, J. W. (1995). Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci U S A 92, 791–795CrossRefGoogle ScholarPubMed
Cech, T. R., (1990). Self-splicing of group I introns. Annu Rev Biochem, 59, 543–568CrossRefGoogle ScholarPubMed
Chen, J. W., Lee, J., and Jayaram, M. (1992). DNA cleavage in trans by the active site tyrosine during Flp recombination: Switching protein partners before exchanging strands. Cell 69, 647–658CrossRefGoogle ScholarPubMed
Chen, Y., Narendra, U., Iype, L. E., Cox, M. M., and Rice, P. A. (2000). Crystal structure of a Flp recombinase-Holliday junction complex: Assembly of an active oligomer by helix swapping. Mol Cell 6, 885–897Google ScholarPubMed
Cheng, C., and Shuman, S. (1998). A catalytic domain of eukaryotic DNA topoisomerase I. J Biol Chem 273, 11589–11595CrossRefGoogle ScholarPubMed
Churchward, G. (2002). Conjugative transposons and related mobile elements. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 177–191CrossRefGoogle Scholar
Colloms, S. D., Bath, J., and Sherratt, D. J. (1997). Topological selectivity in Xer site-specific recombination. Cell 88, 855–864CrossRefGoogle ScholarPubMed
Cornet, F., Hallet, B., and Sherratt, D. J. (1997). Xer recombination in Escherichia coli. Site-specific DNA topoisomerase activity of the XerC and XerD recombinases. J Biol Chem 272, 21927–21931CrossRefGoogle ScholarPubMed
Cozzarelli, N. R., Boles, T. C., and White, J. H. (1990). In Cozzarelli, N. R. and Wang, J. C., eds. Primer on the topology and geometry of DNA supercoiling. In DNA topology and its biological effects (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), pp. 140–184Google Scholar
Cozzarelli, N. R., Krasnow, M. A., Gerrard, S. P., and White, J. H. (1984). A topological treatment of recombination and topoisomerases. Cold Spring Harb Symp Quant Biol 49, 383–400CrossRefGoogle ScholarPubMed
Craig, N. L. (2002a). Mobile DNA: An introduction. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 1–11CrossRefGoogle Scholar
Craig, N. L. (2002b). Tn7. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 423–456CrossRefGoogle Scholar
Craigie, R. (2002). Retroviral DNA integration. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 613–629CrossRefGoogle Scholar
Crisona, N. J., Weinberg, R. L., Peter, B. J., Sumners, D. W., and Cozzarelli, N. R. (1999). The topological mechanism of phage lambda integrase. J Mol Biol 289, 747–775CrossRefGoogle ScholarPubMed
Davies, D. R., Goryshin, I. Y., Reznikoff, W. S., and Rayment, I. (2000). Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 77–85CrossRefGoogle ScholarPubMed
Feng, J. A., Johnson, R. C., and Dickerson, R. E. (1994). Hin recombinase bound to DNA: The origin of specificity in major and minor groove interactions. Science 263, 348–355CrossRefGoogle ScholarPubMed
Fersht, A. (1977). Enzyme structure and mechanism (San Francisco, W. H. Freeman)Google Scholar
Futcher, A. B. (1986). Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119, 197–204CrossRefGoogle ScholarPubMed
Gellert, M. (2002). V(D)J recombination. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 705–729CrossRefGoogle Scholar
Gillette, W. K., Rhee, S., Rosner, J. L., and Martin, R. G. (2000). Structural homology between MarA of the AraC family of transcriptional activators and the integrase family of site-specific recombinases. Mol Microbiol 35, 1582–1583CrossRefGoogle ScholarPubMed
Gopaul, D. N., Guo, F., and Duyne, G. D. (1998). Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J 17, 4175–4187CrossRefGoogle ScholarPubMed
Gopaul, D. N., and Duyne, G. D. (1999). Structure and mechanism in site-specific recombination. Curr Opin Struct Biol 9, 14–20CrossRefGoogle ScholarPubMed
Grainge, I., Buck, D., and Jayaram, M. (2000). Geometry of site alignment during Int family recombination: Antiparallel synapsis by the Flp recombinase. J Mol Biol 298, 749–764CrossRefGoogle ScholarPubMed
Grainge, I., Pathania, S., Vologodskii, A., Harshey, R. M., and Jayaram, M. (2002). Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses. J Mol Biol 320, 515–527CrossRefGoogle ScholarPubMed
Grindley, N. D. F. (2002). The movement of Tn3-like elements: Transposition and cointegrate resolution. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 272–304CrossRefGoogle Scholar
Grishin, N. V. (2000). Two tricks in one bundle: Helix-turn-helix gains enzymatic activity. Nucleic Acids Res 28, 2229–2233CrossRefGoogle ScholarPubMed
Guo, F., Gopaul, D. N., and Duyne, G. D. (1997). Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46CrossRefGoogle Scholar
Guo, F., Gopaul, D. N., and Duyne, G. D. (1999). Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc Natl Acad Sci U S A 96, 7143–7148CrossRefGoogle ScholarPubMed
Hallet, B., Arciszewska, L. K., and Sherratt, D. J. (1999). Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: An enzymatic switch in site-specific recombination. Mol Cell 4, 949–959CrossRefGoogle ScholarPubMed
Haniford, D. (2002). Transposon Tn10. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 457–483CrossRefGoogle Scholar
Huai, Q., Colandene, J. D., Chen, Y., Luo, F., Zhao, Y., Topal, M. D., and Ke, H. (2000). Crystal structure of NaeI–An evolutionary bridge between DNA endonuclease and topoisomerase. EMBO J 19, 3110–3118CrossRefGoogle ScholarPubMed
Jayaram, M., Grainge, I., and Tribble, G. D. (2002). Site-specific recombination by the Flp protein of Saccharomyces cerevisiae. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 192–218CrossRefGoogle Scholar
Jayaram, M., Yang, X. M., Mehta, S., Voziyanov, Y., and Velmurugan, S. (2004). The 2 micron plasmid of Saccharomyces cerevisiae. In Funnell, B., ed. The biology of plasmids (Washington, DC, ASM Press), pp. 303–324Google Scholar
Johnson, R. C. (2002). Bacterial site-specific DNA inversion systems. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 230–271CrossRefGoogle Scholar
Kanaar, R., Klippel, A., Shekhtman, E., Dungan, J. M., Kahmann, R., and Cozzarelli, N. R. (1990). Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62, 353–366CrossRefGoogle ScholarPubMed
Kennedy, A. K., Haniford, D. B., and Mizuuchi, K. (2000). Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: Insights from phosphorothioate stereoselectivity. Cell 101, 295–305CrossRefGoogle ScholarPubMed
Kilbride, E., Boocock, M. R., and Stark, W. M. (1999). Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res/resolvase and bacteriophage P1 loxP/Cre. J Mol Biol 289, 1219–1230CrossRefGoogle ScholarPubMed
Krogh, B. O., and Shuman, S. (2000). Catalytic mechanism of DNA topoisomerase Ib. Mol Cell 5, 1035–1041CrossRefGoogle ScholarPubMed
Kunkel, B., Losick, R., and Stragier, P. (1990). The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev 4, 525–535CrossRefGoogle ScholarPubMed
Landy, A. (1989). Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58, 913–949CrossRefGoogle ScholarPubMed
Lee, J., and Jayaram, M. (1995). Role of partner homology in DNA recombination. Complementary base pairing orients the 5′-hydroxyl for strand joining during Flp site-specific recombination. J Biol Chem 270, 4042–4052CrossRefGoogle ScholarPubMed
Lee, J., Jayaram, M., and Grainge, I. (1999). Wild-type Flp recombinase cleaves DNA in trans. EMBO J 18, 784–791CrossRefGoogle ScholarPubMed
Lee, J., Tonozuka, T., and Jayaram, M. (1997). Mechanism of active site exclusion in a site-specific recombinase: Role of the DNA substrate in conferring half-of-the-sites activity. Genes Dev 11, 3061–3071CrossRefGoogle Scholar
Logie, C., and Stewart, A. F. (1995). Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A. 92, 5940–5944CrossRefGoogle ScholarPubMed
Lusetti, S. L., and Cox, M. M. (2002). The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71, 71–100CrossRefGoogle ScholarPubMed
Mizuuchi, K. (1992a). Polynucleotidyl transfer reactions in transpositional DNA recombination. J Biol Chem 267, 21273–21276Google Scholar
Mizuuchi, K. (1992b). Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61, 1011–1051CrossRefGoogle Scholar
Mizuuchi, K., and Adzuma, K. (1991). Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: Evidence for a one-step transesterification mechanism. Cell 66, 129–140CrossRefGoogle ScholarPubMed
Nunes-Duby, S., Tirumalai, R. S., Dorgai, L., Yagil, E., Weisberg, R., and Landy, A. (1994). Lambda integrase cleaves DNA in cis. EMBO J 13, 4421–4430Google ScholarPubMed
Nunes-Duby, S. E., Azaro, M. A., and Landy, A. (1995). Swapping DNA strands and sensing homology without branch migration in lambda site-specific recombination. Curr Biol 5, 139–148CrossRefGoogle ScholarPubMed
Pan, G., Luetke, K., and Sadowski, P. D. (1993). Mechanism of cleavage and ligation by FLP recombinase: Classification of mutations in FLP protein by in vitro complementation analysis. Mol Cell Biol 13, 3167–3175CrossRefGoogle ScholarPubMed
Parsons, R. L., Prasad, P. V., Harshey, R. M., and Jayaram, M. (1988). Step-arrest mutants of FLP recombinase: Implications for the catalytic mechanism of DNA recombination. Mol Cell Biol 8, 3303–3310CrossRefGoogle ScholarPubMed
Pathania, S., Jayaram, M., and Harshey, R. M. (2002). Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Cell 109, 425–436CrossRefGoogle ScholarPubMed
Perler, F. B. (1998). Protein splicing of inteins and hedgehog autoproteolysis: Structure, function, and evolution. Cell 92, 1–4CrossRefGoogle ScholarPubMed
Perler, F. B. (2002). InBase: The intein database. Nucleic Acids Res 30, 383–384CrossRefGoogle ScholarPubMed
Pyle, A. M. (1993). Ribozymes: A distinct class of metalloenzymes. Science 261, 709–714CrossRefGoogle ScholarPubMed
Recchia, G. D., and Sherratt, D. J. (2002). Gene acquisition in bacteria by integron mediated site-specific recombination. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 162–176CrossRefGoogle Scholar
Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J., and Hol, W. G. (1998). Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279, 1504–1513CrossRefGoogle ScholarPubMed
Reznikoff, W. (2002). Tn5 transposition. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 403–422CrossRefGoogle Scholar
Rice, P. A. (2002). Theme and variation in tyrosine recombinases: Structure of a Flp-DNA complex. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 219–229CrossRefGoogle Scholar
Rice, P. A., and Steitz, T. A. (1994a). Model for a DNA-mediated synaptic complex suggested by crystal packing of gamma delta resolvase subunits. EMBO J 13, 1514–1524Google Scholar
Rice, P. A., and Steitz, T. A. (1994b). Refinement of gamma delta resolvase reveals a strikingly flexible molecule. Structure 2, 371–384CrossRefGoogle Scholar
Rufer, A. W., and Sauer, B. (2002). Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res 30, 2764–2771CrossRefGoogle ScholarPubMed
Sanderson, M. R., Freemont, P. S., Rice, P. A., Goldman, A., Hatfull, G. F., Grindley, N. D., and Steitz, T. A. (1990). The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase at 2.7 Åresolution. Cell 63, 1323–1329CrossRefGoogle Scholar
Santoro, S. W., and Schultz, P. G. (2002). Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A 99, 4185–4190CrossRefGoogle ScholarPubMed
Sau, A. K., DeVue Tribble, G., Grainge, I., Frohlich, R. F., Knudsen, B. R., and Jayaram, M. (2001). Biochemical and kinetic analysis of the RNase active sites of the integrase/tyrosine family site-specific DNA recombinases. J Biol Chem 276, 46612–46623CrossRefGoogle ScholarPubMed
Sauer, B. (2002). Chromosome manipulation by Cre-lox recombination. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp 38–58CrossRefGoogle Scholar
Sekiguchi, J., and Shuman, S. (1997). Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol Cell 1, 89–97CrossRefGoogle ScholarPubMed
Sherratt, D. J., and Wigley, D. B. (1998). Conserved themes but novel activities in recombinases and topoisomerases. Cell 93, 149–152CrossRefGoogle ScholarPubMed
Stark, W. M., Sherratt, D. J., and Boocock, M. R. (1989). Site-specific recombination by Tn3 resolvase: Topological changes in the forward and reverse reactions. Cell 58, 779–790CrossRefGoogle ScholarPubMed
Steitz, T. A., and Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90, 6498–6502CrossRefGoogle ScholarPubMed
Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G., and Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science 279, 1534–1541CrossRefGoogle ScholarPubMed
Stivers, J. T., Jagadeesh, G. J., Nawrot, B., Stec, W. J., and Shuman, S. (2000). Stereochemical outcome and kinetic effects of Rp- and Sp-phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase. Biochemistry 39, 5561–5572CrossRefGoogle ScholarPubMed
Sumners, D. W., Ernst, C., Spengler, S. J., and Cozzarelli, N. R. (1995). Analysis of the mechanism of DNA recombination using tangles. Q Rev Biophys 28, 253–313CrossRefGoogle ScholarPubMed
Van Duyne, G. (2002). A structural view of tyrosine recombinase site-specific recombination. In Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds. Mobile DNA II (Washington, DC, ASM Press), pp. 93–117CrossRefGoogle Scholar
Voziyanov, Y., Pathania, S., and Jayaram, M. (1999). A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res 27, 930–941CrossRefGoogle ScholarPubMed
Voziyanov, Y., Stewart, A. F., and Jayaram, M. (2002). A dual reporter screening system identifies the amino acid at position 82 in Flp site-specific recombinase as a determinant for target specificity. Nucleic Acids Res 30, 1656–1663CrossRefGoogle ScholarPubMed
Wang, J. C. (2002). Cellular roles of DNA topoisomerases: A molecular perspective. Nat Rev Mol Cell Biol 3, 430–440CrossRefGoogle ScholarPubMed
Wasserman, S. A., and Cozzarelli, N. R. (1986). Biochemical topology: Applications to DNA recombination and replication. Science 232, 951–960CrossRefGoogle Scholar
Wittschieben, J., Petersen, B. O., and Shuman, S. (1998). Replacement of the active site tyrosine of vaccinia DNA topoisomerase by glutamate, cysteine or histidine converts the enzyme into a site-specific endonuclease. Nucleic Acids Res 26, 490–496CrossRefGoogle ScholarPubMed
Xu, C. J., Grainge, I., Lee, J., Harshey, R. M., and Jayaram, M. (1998). Unveiling two distinct ribonuclease activities and a topoisomerase activity in a site-specific DNA recombinase. Mol Cell 1, 729–739CrossRefGoogle Scholar
Yang, W., and Steitz, T. A. (1995). Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell 82, 193–207CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×