Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T15:03:24.207Z Has data issue: false hasContentIssue false

4 - The uniformity and density of pest exploitation as guides to success in biological control

from Part II - Ecological considerations

Published online by Cambridge University Press:  13 August 2009

Bradford A. Hawkins
Affiliation:
University of California, Irvine
Howard V. Cornell
Affiliation:
University of Delaware
Get access

Summary

Introduction

Quantitative theory on biological control is usually so simple as to be justifiably criticized as ‘unrealistic’ and ‘untestable’. The synthetic nature of parameters in simple models often leads to insurmountable difficulties in their accurate measurement. It is therefore hardly surprising that few field experiments (see Chapter 3), and only one relevant comparative analysis (Hawkins et al., 1993) have been expressly designed to test biological control theory.

Difficulties in the precise interpretation and measurement of parameters are only part of the reason for a reticence in testing theory. A more chronic problem is that the large body of theoretical research on biological control lacks a conceptual synthesis. We believe that the synthesis developed here will be useful to biological control specialists, because population-specific parameters measurable in the field can be related to the two concepts we introduce below.

A survey

Insect parasitoids are without doubt the most commonly employed biological control agents both in practice and in theoretical developments. Table 4.1 presents a survey of modeling studies on insect parasitoids published since Hassell's seminal monograph on the subject (Hassell, 1978). This table provides a fairly complete catalog, reflecting how both topics and modeling approaches have evolved over the past 20 years. The criteria employed for selecting studies compiled in this list are the following:

  1. The study must be published in a scientific journal.

  2. The study must propose a new model structure, somehow extend previous models, or apply preexisting models to a new biological problem.

  3. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×