Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-09T13:08:12.293Z Has data issue: false hasContentIssue false

1 - From unicellular to multicellular organisation in the social amoeba Dictyostelium discoideum

Published online by Cambridge University Press:  07 December 2009

Cornelis J. Weijer
Affiliation:
University of Dundee
Charlotte Hemelrijk
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

The development of the social amoeba Dictyostelium discoideum

Development of a vertebrate embryo typically involves the generation of millions of cells that differentiate into hundreds of cell types to form a wide variety of different tissues and organs. Some cell types arise and differentiate in situ at the right position at the right time of development; however, many cell types have to migrate during development over considerable distances to reach their final destination. One of the best understood mechanisms guiding long-range cell movement is chemotaxis. Chemotactic cell movement is a key mechanism in the multicellular development of the social amoeba Dictyostelium discoideum. Its development is in many respects much simpler and more amenable to experimental analysis than that of vertebrates. The cells proliferate in the vegetative stage as single amoebae, which live in the soil and feed on bacteria. When the population size increases, the cells in the centre of the colony will start to starve, and starvation for amino acids acts as a signal for the cells to enter a multicellular developmental phase. Up to 105 cells aggregate to form a multicellular aggregate which transforms into a cylindrical slug. The slug migrates under the control of environmental signals such as light and temperature gradients to the soil surface, where low humidity and overhead light trigger the conversion of the slug into a fruiting body. The fruiting body consists of a stalk of dead cells supporting a mass of spores.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Early, A., Siegert, F., Weijer, C. and Williams, J. (1994). Patterns of cell movement within the Dictyostelium slug revealed by cell type-specific, surface labeling of living cells. Cell 77, 687–699CrossRefGoogle ScholarPubMed
Aranson, I., Levine, H. and Tsimring, L. (1996). Spiral competition in 3-component excitable media. Phys. Rev. Lett. 76, 1170–1173CrossRefGoogle Scholar
Bretschneid, T., Siegert, F. and Weijer, C. J. (1995). Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs. Proc. Natl Acad. Sci. USA 92, 4387–4391CrossRefGoogle Scholar
Bretschneider, T., Vasiev, B. and Weijer, C. J. (1997). A model for cell movement during Dictyostelium mound formation. J. Theoret. Biol. 189, 41CrossRefGoogle ScholarPubMed
Bretschneider, T., Vasiev, B. and Weijer, C. J. (1999). A model for Dictyostelium slug movement. J. Theoret. Biol. 199, 125–136CrossRefGoogle ScholarPubMed
Chen, T. L. L., Wolf, W. A. and Chisholm, R. L. (1998). Cell-type-specific rescue of myosin function during Dictyostelium development defines two distinct cell movements required for culmination. Development 125, 3895–3903Google ScholarPubMed
Dallon, J. C. and Othmer, H. G. (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. Roy. Soc. London B 352, 391–417CrossRefGoogle ScholarPubMed
Dallon, J. C. and Othmer, H. G. (1998). A continuum analysis of the chemotatic signal seen by Dictyostelium discoideum. J. Theoret. Biol. 194, 461–483CrossRefGoogle Scholar
Devreotes, P. (1989). Cell–cell interactions in Dictyostelium development. Trends Genet. 5, 242–245CrossRefGoogle ScholarPubMed
Dormann, D. and Weijer, C. J. (2001). Propagating chemoattractant waves coordinate periodic cell movement in Dictyostelium slugs. Development 128, 4535–4543Google ScholarPubMed
Dormann, D., Siegert, F. and Weijer, C. J. (1996). Analysis of cell movement during the culmination phase of Dictyostelium development. Development 122, 761–769Google ScholarPubMed
Dormann, D., Vasiev, B. and Weijer, C. J. (2000). The control of chemotactic cell movement during Dictyostelium morphogenesis. Phil. Trans. Roy. Soc. London B 355, 983–991CrossRefGoogle ScholarPubMed
Dormann, D., Weijer, G., Parent, C. A., Devreotes, P. N. and Weijer, C. J. (2002). Visualising PI3 kinase mediated signal transduction during Dictyostelium development. Curr. Biol. 12, 1178–1188CrossRefGoogle Scholar
Falcke, M. and Levine, H. (1998). Pattern selection by gene expression in Dictyostelium discoideum. Phys. Rev. Lett. 80, 3875–3878CrossRefGoogle Scholar
Firtel, R. A. (1996). Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr. Opin. Genet. Devel. 6, 545–554CrossRefGoogle ScholarPubMed
Foerster, P., Muller, S. and Hess, B. (1990). Curvature and spiral geometry in aggregation patterns of Dictyostelium discoideum. Development 109, 11–16Google Scholar
Gerisch, G. (1987). Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu. Rev. Biochem. 56, 853–879CrossRefGoogle ScholarPubMed
Gerisch, G., Noegel, A., Schleicher, M., Segall, J. and Wallraff, E. (1987). Signal transduction and chemotaxis in Dictyostelium discoideum. Biol. Chem. Vorg. Hoppe-Seyler Z. Physiol. Chem. 1987, 1045–1046Google Scholar
Goldbeter, A. and Martiel, J. L. (1988). Developmental control of a biological rhythm: the onset of cAMP oscillations in Dictyostelium cells. In From Chemical to Biological Organisation, ed. Markus, M., Muller, S. C. and Nicolis, G.. Berlin: Springer-Verlag, pp. 248–254CrossRefGoogle Scholar
Gross, J. D., Peacey, M. J. and Trevan, D. J. (1976). Signal emission and signal propagation during early aggregation in Dictyostelium discoideum. J. Cell Sci. 22, 645–656Google ScholarPubMed
Halloy, J., Lauzeral, J. and Goldbeter, A. (1998). Modeling oscillations and waves of cAMP in Dictyostelium discoideum cells. Biophys. Chem. 72, 9–19CrossRefGoogle ScholarPubMed
Jiang, Y., Levine, H. and Glazier, J. (1998). Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium. Biophys. J. 75, 2615–2625CrossRefGoogle ScholarPubMed
Keller, E. F. and Segel, L. A. (1970a). Conflict between positive and negative feedback as an explanation for the initiation of aggregation in slime mould amoebae. Nature 227, 1365–1366CrossRefGoogle Scholar
Keller, E. F. and Segel, L. A. (1970b). Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415CrossRefGoogle Scholar
Kessin, R. (2001). Dictyostelium. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Lauzeral, J., Halloy, J. and Goldbeter, A. (1997). Desynchronization of cells on the developmental path triggers the formation of spiral waves of cAMP during Dictyostelium aggregation. Proc. Natl Acad. Sci. USA 94, 9153–9158CrossRefGoogle ScholarPubMed
Levine, H. and Reynolds, W. (1991). Streaming instability of aggregating slime mold amoebae. Phys. Rev. Lett. 66, 2400–2403CrossRefGoogle ScholarPubMed
Levine, H., Aranson, I., Tsimring, L. and Truong, T. V. (1996). Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. Proc. Natl Acad. Sci. USA 93, 6382–6386CrossRefGoogle ScholarPubMed
Maree, A. F. M. and Hogeweg, P. (2001). How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 98, 3879–3883CrossRefGoogle ScholarPubMed
Maree, A. F. M., Panfilov, A. V. and Hogeweg, P. (1999a). Migration and thermotaxis of Dictyostelium discoideum slugs: a model study. J. Theoret. Biol. 199, 297–309CrossRefGoogle Scholar
Maree, A. F. M., Panfilov, A. V. and Hogeweg, P. (1999b). Phototaxis during the slug stage of Dictyostelium discoideum: a model study. Proc. Roy. Soc. London B 266, 1351–1360CrossRefGoogle Scholar
Martiel, J. L. and Goldbeter, A. (1987a). Origin of bursting and birhythmicity in a model for cyclic AMP oscillations in Dictyostelium cells. Lect. Notes Biomath. 71, 244–255CrossRefGoogle Scholar
Martiel, J. L. and Goldbeter, A. (1987b). A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys. J. 52, 807–828CrossRefGoogle Scholar
Matsukuma, S. and Durston, A. J. (1979). Chemotactic cell sorting in Dictyostelium discoideum. J. Embryol. Exp. Morphol. 50, 243–251Google ScholarPubMed
Meili, R., Ellsworth, C., Lee, S.et al. (1999). Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105CrossRefGoogle ScholarPubMed
Monk, P. B. and Othmer, H. G. (1989). Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Phil. Trans. Roy. Soc. London B 323, 185–224CrossRefGoogle ScholarPubMed
Noegel, A. A. and Schleicher, M. (2000). The actin cytoskleleton of Dictyostelium: a story told by mutants. J. Cell Sci. 113, 759–766Google ScholarPubMed
Othmer, H. G., Monk, P. B. and Rapp, P. E. (1985). A model for signal relay and adaptation of Dictyostelium discoideum. II. Analytical and numerical results. Math. Biosci. 77, 79–139CrossRefGoogle Scholar
Palsson, E. and Othmer, H. G. (2000). A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 97, 10448–10453CrossRefGoogle ScholarPubMed
Parent, C. A. and Devreotes, P. N. (1996). Molecular genetics of signal transduction in Dictyostelium. Annu. Rev. Biochem. 65, 411–440CrossRefGoogle ScholarPubMed
Parent, C. A. and Devreotes, P. N. (1999). A cell's sense of direction. Science 284, 765–770CrossRefGoogle ScholarPubMed
Patel, H., Guo, K. D., Parent, C.et al. (2000). A temperature-sensitive adenylyl cyclase mutant of Dictyostelium. EMBO J. 19, 2247–2256CrossRefGoogle ScholarPubMed
Raper, K. B. (1940). Pseudoplasmodium formation and organization in Dictyostelium discoideum. J. Elisha Mitchell Sci. Soc. 56, 241–282Google Scholar
Rietdorf, J., Siegert, F. and Weijer, C. J. (1996). Analysis of optical-density wave propagation and cell movement during mound formation in Dictyostelium discoideum. Devel. Biol. 177, 427–438CrossRefGoogle ScholarPubMed
Rivero, F., Koppel, B., Peracino, B.et al. (1996). The role of the cortical cytoskeleton: F-actin cross-linking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J. Cell Sci. 109, 2679–2691Google Scholar
Rubin, J. and Robertson, A. (1975). The tip of Dictyostelium discoideum pseudoplasmodium as an organizer. J. Embryol. Exp. Morphol. 33, 227–241Google ScholarPubMed
Savill, N. J. and Hogeweg, P. (1997). Modelling morphogenesis: from single cells to crawling slugs. J. Theoret. Biol. 184, 229–235CrossRefGoogle Scholar
Schaap, P., Tang, Y. H. and Othmer, H. G. (1996). A model for pattern formation in Dictyostelium discoideum (vol. 60, pg 1, 1996). Differentiation 61, 141–151CrossRefGoogle Scholar
Siegert, F. and Weijer, C. (1989). Digital image processing of optical density wave propagation in Dictyostelium discoideum and analysis of the effects of caffeine and ammonia. J. Cell Sci. 93, 325–335Google Scholar
Siegert, F. and Weijer, C. (1992). Three-dimensional scroll waves organize Dictyostelium slugs. Proc. Natl Acad. Sci. USA 89, 6433–6437CrossRefGoogle ScholarPubMed
Siegert, F. and Weijer, C. (1995). Spiral and concentric waves organize multicellular Dictyostelium mounds. Curr. Biol. 5, 937–943CrossRefGoogle ScholarPubMed
Siu, C. H. and Kamboj, R. K. (1990). Cell–cell adhesion and morphogenesis in Dictyostelium discoideum. Devel. Genet. 11, 377–387CrossRefGoogle ScholarPubMed
Springer, M. L., Patterson, B. and Spudich, J. A. (1994). Stage-specific requirement for myosin II during Dictyostelium development. Development 120, 2651–2660Google ScholarPubMed
Sternfeld, J. (1992). A study of pst B cells during Dictyostelium migration and culmination reveals a unidirectional cell type conversion process. W. Roux Arch. Dev. Biol. 201, 354–363CrossRefGoogle Scholar
Sternfeld, J. (1998). The anterior-like cells in Dictyostelium are required for the elevation of the spores during culmination. Devel. Genes Evol. 208, 487–494CrossRefGoogle ScholarPubMed
Sternfeld, J. and David, C. N. (1982). Fate and regulation of anterior-like cells in Dictyostelium slugs. Devel. Biol. 93, 111–118CrossRefGoogle ScholarPubMed
Tang, Y. H. and Othmer, H. G. (1994). A G-protein-based model of adaptation in Dictyostelium discoideum. Math. Biosci. 120, 25–76CrossRefGoogle ScholarPubMed
Tang, Y. H. and Othmer, H. G. (1995). Excitation, oscillations and wave propagation in a G-protein-based model of signal transduction in Dictyostelium discoideum. Phil. Trans. Roy. Soc. London B 349, 179–195CrossRefGoogle Scholar
Tomchik, K. J. and Devreotes, P. N. (1981). Adenosine 3′,5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography technique. Science 212, 443–446CrossRefGoogle Scholar
Oss, C., Panfilov, A. V., Hogeweg, P., Siegert, F. and Weijer, C. J. (1996). Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum. J. Theoret. Biol. 181, 203–213Google ScholarPubMed
Varnum-Finney, B., Schroeder, N. A. and Soll, D. R. (1988). Adaptation in the motility response to cAMP in Dictyostelium discoideum. Cell Motil. Cytoskel. 9, 9–16CrossRefGoogle ScholarPubMed
Vasiev, B. and Weijer, C. J. (1999). Modeling chemotactic cell sorting during Dictyostelium discoideum mound formation. Biophys. J. 76, 595–605CrossRefGoogle ScholarPubMed
Vasiev, B. N., Hogeweg, P. and Panfilov, A. V. (1994). Simulation of Dictyostelium discoideum aggregation via reaction–diffusion model. Phys. Rev. Lett. 73, 3173–3176CrossRefGoogle ScholarPubMed
Vasiev, B., Siegert, F. and Weijer, C. J. (1997a). A hydrodynamic model for Dictyostelium discoideum mound formation. J. Theoret. Biol. 184, 441CrossRefGoogle Scholar
Vasiev, B., Siegert, F. and Weijer, C. J. (1997b). Multiarmed spirals in excitable media. Phys. Rev. Lett. 78, 2489–2492CrossRefGoogle Scholar
Weeks, G. and Weijer, C. J. (1994). The Dictyostelium cell cycle and its relationship to differentiation. (Minireview.)FEMS Microbiol. Lett. 124, 123–130CrossRefGoogle Scholar
Zimmerman, W. and Weijer, C. J. (1993). Analysis of cell cycle progression during the development of Dictyostelium and its relationship to differentiation. Devel. Biol. 160, 178–185CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×