Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-29T06:59:45.026Z Has data issue: false hasContentIssue false

11 - Chronic lymphoproliferative disorders and malignant lymphoma

Published online by Cambridge University Press:  07 August 2009

Attilio Orazi
Affiliation:
Indiana University
Dennis P. O'Malley
Affiliation:
Indiana University
Daniel A. Arber
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Lymphoproliferative disorders frequently involve the peripheral blood and bone marrow, and bone marrow studies may be performed for primary diagnosis or as a staging procedure in patients with lymphoproliferative disorders. A primary diagnosis with accurate classification can often be made on bone marrow samples alone, if a combined morphologic and immunophenotypic approach is used. The addition of molecular or cytogenetic studies can resolve some of the low percentage of cases that are equivocal after morphologic and immunophenotypic analysis.

Many of the low-grade B-cell lymphomas will involve the bone marrow, but the precise morphologic classification of these diseases is complicated by the fact that characteristic architectural patterns seen in lymph nodes involved by these diseases are not present in the bone marrow. Despite this, many of the low-grade B-cell lymphomas have characteristic immunophenotypes that allow for proper classification. Flow cytometric immunophenotyping of involved peripheral blood or bone marrow aspirate material allows for evaluation of the largest number of antigens, as well as confirming aberrant co-expression of antigens that are characteristic of certain disease types. However, paraffin section immunophenotyping, which can be performed on core or clot biopsy material, can also be used successfully to detect many antigens of interest in these cases. The characteristic immunophenotypic features of the various small B-cell lymphoid proliferations are summarized in Table 11.1.

Molecular genetic or cytogenetic studies may also be useful in selected cases to confirm the presence of a clonal population, when the differential diagnosis is between reactive and neoplastic lymphoid proliferations (Arber, 2000).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arber, D. A. (2000). Molecular diagnostic approach to non-Hodgkin's lymphoma. Journal of Molecular Diagnostics, 2, 178–90.CrossRefGoogle ScholarPubMed
Bartlett, N. L. & Longo, D. L. (1999). T-small lymphocyte disorders. Seminars in Hematology, 36, 164–70Google ScholarPubMed
Bennett, J. M., Catovsky, D., Daniel, M. T., et al. (1989). Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. French–American–British (FAB) Cooperative Group. Journal of Clinical Pathology, 78, 325–9.Google Scholar
Bluth, R. F., Casey, T. T., & McCurley, T. L. (1993). Differentiation of reactive from neoplastic small-cell lymphoid aggregates in paraffin-embedded marrow particle preparations using L-26 (CD20) and UCHL-1 (CD45RO) monoclonal antibodies. American Journal of Clinical Pathology, 99, 150–6.CrossRefGoogle ScholarPubMed
Bosch, F., Campo, E., Jares, P., et al. (1995). Increased expression of the PRAD-1/CCND1 gene in hairy cell leukaemia. British Journal of Haematology, 91, 1025–30.CrossRefGoogle ScholarPubMed
Braunschweig, R., Baur, A. S., Delacretaz, F., Bricod, C., & Benhattar, J. (2003). Contribution of IgH-PCR to the evaluation of B-cell lymphoma involvement in paraffin-embedded bone marrow biopsy specimens. American Journal of Clinical Pathology, 119, 634–42.CrossRefGoogle ScholarPubMed
Brito-Babapulle, V., Pittman, S., Melo, J. V., Pomfret, M., & Catovsky, D. (1987a). Cytogenetic studies on prolymphocytic leukemia. 1. B-cell prolymphocytic leukemia. Hematologic Pathology, 1, 27–33.Google Scholar
Brito-Babapulle, V., Pomfret, M., Matutes, E., & Catovsky, D. (1987b). Cytogenetic studies on prolymphocytic leukemia. II. T-cell prolymphocytic leukemia. Blood, 70, 926–31.Google Scholar
Catovsky, D., O'Brien, M., Melo, J. V., Wardle, J., & Brozovic, M. (1984). Hairy cell leukemia (HCL) variant: an intermediate disease between HCL and B prolymphocytic leukemia. Seminars in Oncology, 11, 362–9.Google ScholarPubMed
Chang, K. L., Stroup, R., & Weiss, L. M. (1992). Hairy cell leukemia: current status. American Journal of Clinical Pathology, 97, 719–38.CrossRefGoogle ScholarPubMed
Chang, K. L., Kamel, O. W., Arber, D. A., Horyd, I. D., & Weiss, L. M. (1995). Pathologic features of nodular lymphocyte predominance Hodgkin's disease in extranodal sites. American Journal of Surgical Pathology, 19, 1313–24.CrossRefGoogle ScholarPubMed
Cheson, B. D., Bennett, J. M., Grever, M., et al. (1996). National Cancer Institute-sponsored working group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood, 87, 4990–7.Google Scholar
Cheson, B. D., Horning, S. J., Coiffier, B., et al. (1999). Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. Journal of Clinical Oncology, 17, 1244–53.CrossRefGoogle ScholarPubMed
Chu, P. G., Chen, Y. Y., Molina, A., Arber, D. A., & Weiss, L. M. (2002). Recurrent B-cell neoplasms after Rituximab therapy: an immunophenotypic and genotypic study. Leukemia and Lymphoma, 43, 2335–41.CrossRefGoogle ScholarPubMed
Cohen, P. L., Kurtin, P. J., Donovan, K. A., & Hanson, C. A. (1998). Bone marrow and peripheral blood involvement in mantle cell lymphoma. British Journal of Haematology, 101, 302–10.CrossRefGoogle ScholarPubMed
Costes, V., Duchayne, E., Taib, J., et al. (2002). Intrasinusoidal bone marrow infiltration: a common growth pattern for different lymphoma subtypes. British Journal of Haematology, 119, 916–22.CrossRefGoogle ScholarPubMed
Crespo, M., Bosch, F., Villamor, N., et al. (2003). ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. New England Journal of Medicine, 348, 1764–75.CrossRefGoogle ScholarPubMed
Damle, R. N., Wasil, T., Fais, F., et al. (1999). Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood, 94, 1840–7.Google ScholarPubMed
Dayton, V. D., Arthur, D. C., Gajl-Peczalska, K. J., & Brunning, R. (1994). L3 acute lymphoblastic leukemia. Comparison with small noncleaved cell lymphoma involving the bone marrow. American Journal of Clinical Pathology, 101, 130–9.CrossRefGoogle ScholarPubMed
Diamandidou, E., Cohen, P. R., & Kurzrock, R. (1996). Mycosis fungoides and Sezary syndrome. Blood, 88, 2385–409.Google ScholarPubMed
Diehl, L. F. & Ketchum, L. H. (1998). Autoimmune disease and chronic lymphocytic leukemia: autoimmune hemolytic anemia, pure red cell aplasia, and autoimmune thrombocytopenia. Seminars in Oncology, 25, 80–97.Google ScholarPubMed
Dierlamm, J., Michaux, L., Wlodarska, I., et al. (1996). Trisomy 3 in marginal zone B-cell lymphoma: a study based on cytogenetic analysis and fluorescence in situ hybridization. British Journal of Haematology, 93, 242–9.CrossRefGoogle ScholarPubMed
Dierlamm, J., Baens, M., Wlodarska, I., et al. (1999). The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood, 93, 3601–9.Google Scholar
DiGiuseppe, J. A. & Borowitz, M. J. (1998). Clinical utility of flow cytometry in the chronic lymphoid leukemias. Seminars in Oncology, 25, 6–10.Google ScholarPubMed
DiGiuseppe, J. A., Louie, D. C., Williams, J. E., et al. (1997). Blastic natural killer cell leukemia/lymphoma: a clinicopathologic study. American Journal of Surgical Pathology, 21, 1223–30.CrossRefGoogle ScholarPubMed
Dohner, H., Stilgenbauer, S., Dohner, K., Bentz, M., & Lichter, P. (1999). Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. Journal of Molecular Medicine, 77, 266–81.Google ScholarPubMed
Espinet, B., Larriba, I., Salido, M., et al. (2002). Genetic characterization of the paraimmunoblastic variant of small lymphocytic lymphoma/chronic lymphocytic leukemia: a case report and review of the literature. Human Pathology, 33, 1145–8.CrossRefGoogle ScholarPubMed
Farhi, D. C. (1989). Germinal centers in the bone marrow. Hematologic Pathology, 3, 133–6.Google ScholarPubMed
Ferry, J. A., Yang, W. I., Zukerberg, L. R., Wotherspoon, A. C., Arnold, A., & Harris, N. L. (1996). CD5+ extranodal marginal zone B-cell (MALT) lymphoma: a low grade neoplasm with a propensity for bone marrow involvement and relapse. American Journal of Clinical Pathology, 105, 31–7.CrossRefGoogle ScholarPubMed
Franco, V., Florena, A. M., & Campesi, G. (1996). Intrasinusoidal bone marrow infiltration: a possible hallmark of splenic lymphoma. Histopathology, 29, 571–5.CrossRefGoogle ScholarPubMed
Garand, R., Goasguen, J., Brizard, A., et al. (1998). Indolent course as a relatively frequent presentation in T-prolymphocytic leukaemia. Groupe Français d'Hématologie Cellulaire. British Journal of Haematology, 103, 488–94.CrossRefGoogle ScholarPubMed
Graham, S. J., Sharpe, R. W., Steinberg, S. M., Cotelingam, J. D., Sausville, E. A., & Foss, F. M. (1993). Prognostic implications of a bone marrow histopathologic classification system in mycosis fungoides and the Sézary syndrome. Cancer, 72, 726–34.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Haglund, U., Juliusson, G., Stellan, B., & Gahrton, G. (1994). Hairy cell leukemia is characterized by clonal chromosome abnormalities clustered to specific regions. Blood, 83, 2637–45.Google ScholarPubMed
Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G., & Stevenson, F. K. (1999). Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood, 94, 1848–54.Google ScholarPubMed
Hoyer, J. D., Li, C. Y., Yam, L. T., Hanson, C. A., & Kurtin, P. J. (1997). Immunohistochemical demonstration of acid phosphatase isoenzyme 5 (tartrate-resistant) in paraffin sections of hairy cell leukemia and other hematologic disorders. American Journal of Clinical Pathology, 108, 308–15.CrossRefGoogle ScholarPubMed
Isaacson, P. G., Matutes, E., Burke, M., & Catovsky, D. (1994). The histopathology of splenic lymphoma with villous lymphocytes. Blood, 84, 3828–34.Google ScholarPubMed
Jaffe, E. S., Blattner, W. A., Blayney, D. W., et al. (1984). The pathologic spectrum of adult T-cell leukemia/lymphoma in the United States: human T-cell leukemia/lymphoma virus-associated lymphoid malignancies. American Journal of Surgical Pathology, 8, 263–75.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. (2001). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press.
Kadin, M. E., Donaldson, S. S., & Dorfman, R. F. (1970). Isolated granulomas in Hodgkin's disease. New England Journal of Medicine, 283, 859–61.CrossRefGoogle ScholarPubMed
Kamada, N., Sakurai, M., Miyamoto, K., et al. (1992). Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Research, 52, 1481–93.Google ScholarPubMed
Kikuchi, M., Takeshita, M., Ohshima, K., & Yoshida, T. (1992). Pathology of adult T-cell leukemia/lymphoma and HTLV-1 associated organopathies. Gann Monograph on Cancer Research, 39, 69–80.Google Scholar
Kremer, M., Cabras, A. D., Fend, F., et al. (2000). PCR analysis of IgH-gene rearrangements in small lymphoid infiltrates microdissected from sections of paraffin-embedded bone marrow biopsy specimens. Human Pathology, 31, 847–53.CrossRefGoogle ScholarPubMed
Lai, R., Weiss, L. M., Chang, K. L., & Arber, D. A. (1999). Frequency of CD43 expression in non-Hodgkin lymphoma. A survey of 742 cases and further characterization of rare CD43+ follicular lymphomas. American Journal of Clinical Pathology, 111, 488–94.CrossRefGoogle ScholarPubMed
Lambertenghi-Deliliers, G., Annaloro, C., Soligo, D., et al. (1992). Incidence and histological features of bone marrow involvement in malignant lymphomas. Annals of Hematology, 65, 61–5.CrossRefGoogle ScholarPubMed
Lens, D., Matutes, E., Catovsky, D., & Coignet, L. J. (2000). Frequent deletions at 11q23 and 13q14 in B cell prolymphocytic leukemia (B-PLL). Leukemia, 14, 427–30.CrossRefGoogle Scholar
Loughran, T. P. Jr. (1993). Clonal diseases of large granular lymphocytes. Blood, 82, 1–14.Google ScholarPubMed
Matutes, E. & Catovsky, D. (1996). Similarities between T-cell chronic lymphocytic leukemia and the small-cell variant of T-prolymphocytic leukemia. Blood, 87, 3520–1.Google ScholarPubMed
Matutes, E., Brito-Babapulle, V., Swansbury, J., et al. (1991). Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood, 78, 3269–74.Google ScholarPubMed
Matutes, E., Morilla, R., Owusu-Ankomah, K., Houliham, A., Meeus, P., & Catovsky, D. (1994). The immunophenotype of hairy cell leukemia (HCL): proposal for a scoring system to distinguish HCL from B-cell disorders with hairy or villous lymphocytes. Leukemia and Lymphoma, 14, 57–61.Google ScholarPubMed
Matutes, E., Wotherspoon, A., & Catovsky, D. (2003). The variant form of hairy-cell leukaemia. Best Practice and Research: Clinical Haematology, 16, 41–56.Google ScholarPubMed
Momose, H., Jaffe, E. S., Shin, S. S., Chen, Y. Y., & Weiss, L. M. (1992). Chronic lymphocytic leukemia/small lymphocytic lymphoma with Reed–Sternberg-like cells and possible transformation to Hodgkin's disease: mediation by Epstein–Barr virus. American Journal of Surgical Pathology, 16, 859–67.CrossRefGoogle ScholarPubMed
Morice, W. G., Kurtin, P. J., Tefferi, A., & Hanson, C. A. (2002). Distinct bone marrow findings in T-cell granular lymphocytic leukemia revealed by paraffin section immunoperoxidase stains for CD8, TIA-1, and granzyme B. Blood, 99, 268–74.CrossRefGoogle ScholarPubMed
Ott, G., Kalla, J., Hanke, A., et al. (1998). The cytomorphological spectrum of mantle cell lymphoma is reflected by distinct biological features. Leukemia and Lymphoma, 32, 55–63.CrossRefGoogle ScholarPubMed
Pangalis, G. A., Roussou, P. A., Kittas, C., et al. (1984). Patterns of bone marrow involvement in chronic lymphocytic leukemia and small lymphocytic (well differentiated) non-Hodgkin's lymphoma. Its clinical significance in relation to their differential diagnosis and prognosis. Cancer, 54, 702–8.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Pettitt, A. R., Zuzel, M., & Cawley, J. C. (1999). Hairy-cell leukaemia: biology and management. British Journal of Haematology, 106, 2–8.CrossRefGoogle ScholarPubMed
Pritsch, O., Maloum, K., & Dighiero, G. (1998). Basic biology of autoimmune phenomena in chronic lymphocytic leukemia. Seminars in Oncology, 25, 34–41.Google ScholarPubMed
Robertson, L. E., Redman, J. R., Butler, J. J., et al. (1991). Discordant bone marrow involvement in diffuse large-cell lymphoma: a distinct clinical–pathologic entity associated with a continuous risk of relapse. Journal of Clinical Oncology, 9, 236–42.CrossRefGoogle ScholarPubMed
Rozman, C., Montserrat, E., Rodriguez-Fernandez, J. M., et al. (1984). Bone marrow histologic pattern: the best single prognostic parameter in chronic lymphocytic leukemia. A multivariate survival analysis of 329 cases. Blood, 64, 642–8.Google ScholarPubMed
Salhany, K. E., Greer, J. P., Cousar, J. B., & Collins, R. D. (1992). Marrow involvement in cutaneous T-cell lymphoma: a clinicopathologic study of 60 cases. American Journal of Clinical Pathology, 92, 747–54.CrossRefGoogle Scholar
Salomon-Nguyen, F., Valensi, F., Troussard, X., & Flandrin, G. (1996). The value of the monoclonal antibody, DBA44, in the diagnosis of B-lymphoid disorders. Leukemia Research, 20, 909–13.CrossRefGoogle Scholar
Schechter, G. P., Sausville, E. A., Fischmann, A. B., et al. (1987). Evaluation of circulating malignant cells provides prognostic information in cutaneous T cell lymphoma. Blood, 69, 841–9.Google ScholarPubMed
Schlette, E., Bueso-Ramos, C., Giles, F., Glassman, A., Hayes, K., & Medeiros, L. J. (2001). Mature B-cell leukemias with more than 55% prolymphocytes: a heterogeneous group that includes an unusual variant of mantle cell lymphoma. American Journal of Clinical Pathology, 115, 571–81.CrossRefGoogle ScholarPubMed
Sivakumaran, M. & Richards, S. J. (1996). The clinical relevance of fluctuations in absolute-lymphocyte counts during follow-up of large granular lymphocyte proliferations. Blood, 88, 1899–900.Google ScholarPubMed
Stilgenbauer, S., Bullinger, L., Lichter, P., Dohner, H., & German CLL Study Group. (2002). Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia, 16, 993–1007.CrossRefGoogle ScholarPubMed
Stoppa-Lyonnet, D., Soulier, J., Lauge, A., et al. (1998). Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood, 91, 3920–6.Google ScholarPubMed
Streubel, B., Simonitsch-Klupp, I., Müllauer, L., et al. (2004). Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia, 18, 1722–6.CrossRefGoogle ScholarPubMed
Taylor, A. M., Metcalfe, J. A., Thick, J., & Mak, Y. F. (1996). Leukemia and lymphoma in ataxia telangiectasia. Blood, 87, 423–38.Google ScholarPubMed
Thangavelu,, M., Finn, W. G., Yelavarthi, K. K., et al. (1997). Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with mycosis fungoides/Sézary syndrome. Blood, 89, 3371–7.Google Scholar
Thiele, J., Zirbes, T. K., Kvasnicka, H. M., & Fischer, R. (1999). Focal lymphoid aggregates (nodules) in bone marrow biopsies: differentiation between benign hyperplasia and malignant lymphoma. A practical guideline. Journal of Clinical Pathology, 52, 294–300.CrossRefGoogle ScholarPubMed
Torlakovic, E., Torlakovic, G., & Brunning, R. D. (2002). Follicular pattern of bone marrow involvement by follicular lymphoma. American Journal of Clinical Pathology, 118, 780–6.CrossRefGoogle ScholarPubMed
Tsukasaki, K., Imaizumi, Y., Tawara, M., et al. (1999). Diversity of leukaemic cell morphology in ATL correlates with prognostic factors, aberrant immunophenotype and defective HTLV-1 genotype. British Journal of Haematology, 105, 369–75.CrossRefGoogle ScholarPubMed
Vonderheid, E. C., Sobel, E. L., Nowell, P. C., Finan, J. B., Helfrich, M. K., & Whipple, D. S. (1985). Diagnostic and prognostic significance of Sézary cells in peripheral blood smears from patients with cutaneous T cell lymphoma. Blood, 66, 358–66.Google ScholarPubMed
Wasman, J., Rosenthal, N. S., & Farhi, D. C. (1996). Mantle cell lymphoma: morphologic findings in bone marrow involvement. American Journal of Clinical Pathology, 106, 196–200.CrossRefGoogle ScholarPubMed
Wong, K. F., Zhang, Y. M., & Chan, J. K. (1999). Cytogenetic abnormalities in natural killer cell lymphoma/leukaemia: is there a consistent pattern?Leukemia and Lymphoma, 34, 241–50.CrossRefGoogle Scholar
Xu, Y., McKenna, R. W., & Kroft, S. H. (2002). Assessment of CD10 in the diagnosis of small B-cell lymphomas: a multiparameter flow cytometric study. American Journal of Clinical Pathology, 117, 291–300.CrossRefGoogle Scholar
Yang, F., Tran, T.-A., Carlson, J. A., His, E. D., Ross, C. W., & Arber, D. A. (2000). Paraffin section immunophenotype of cutaneous and extracutaneous mast cell disease: comparison to other hematopoietic neoplasms. American Journal of Surgical Pathology, 24, 703–9.CrossRefGoogle ScholarPubMed
Yegappan, S., Coupland, R., Arber, D. A., et al. (2001). Angiotropic lymphoma: an immunophenotypically and clinically heterogeneous lymphoma. Modern Pathology, 14, 1147–56.CrossRefGoogle ScholarPubMed
Zambello, R. & Semenzato, G. (1998). Large granular lymphocytosis. Haematologica, 83, 936–42.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×