Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T11:37:48.379Z Has data issue: false hasContentIssue false

18 - Genetics of autoimmune disease

Published online by Cambridge University Press:  17 August 2009

Alan Wright
Affiliation:
MRC Human Genetics Unit, Edinburgh
Nicholas Hastie
Affiliation:
MRC Human Genetics Unit, Edinburgh
Get access

Summary

Introduction

The autoimmune diseases are disorders where the immune system erroneously targets self-antigens leading to organ specific or systemic tissue damage (Goodnow et al., 2005). These aberrant responses are the results of a breach in tolerance characterized by either cellular or humoral autoreactivity. Examples of autoimmunity occur in most organ systems and include autoimmune responses to the β-cell in the pancreas (Type 1 diabetes), to myelin in the central nervous system (multiple sclerosis), to hepatocytes (chronic active hepatitis), to thyrocytes (Graves' disease or autoimmune thyroiditis), skin (psoriasis or vitiligo), renal basement membrane (Goodpasture's disease), joints (rheumatoid arthritis) or gastrointestinal mucosa (ulcerative colitis or Crohn's disease). Generalized autoimmune diseases such as systemic lupus erythematosus, and system sclerosis also affect multiple organs simultaneously.

Background: genes and environment

The characterization of genetic determinants in disease has been transformed with the availability of the tools and technologies which have emerged from sequencing and characterizing variation in the human genome over the past 20 years. This has allowed the systematic characterization of the genome and the analysis of variation in genetic material in individuals and in families with a range of complex common diseases. The autoimmune diseases represent typical complex diseases with substantial genetic and environmental components (Roderick and Navajas, 2003).

Type
Chapter
Information
Genes and Common Diseases
Genetics in Modern Medicine
, pp. 268 - 276
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, T., Satsangi, J., McGovern, D., Bunce, M. and Jewell, D. P. (2001). Review article: the genetics of inflammatory bowel disease. Aliment Pharmacol Ther, 15, 731–48.CrossRefGoogle ScholarPubMed
Anderson, M. S., Venanzi, E. S., Klein, L.et al. (2002). Projection of an immunological self shadow within the thymus by the aire protein. Science, 298, 1395–401.CrossRefGoogle ScholarPubMed
Brewerton, D. A., Hart, F. D., Nicholls, A.et al. (1973). Ankylosing spondylitis and HL-A 27. Lancet, 1, 904–7.CrossRefGoogle ScholarPubMed
Concannon, P., Gogolin-Ewens, K. J., Hinds, D. A.et al. (1998). A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat Genet, 19, 292–6.CrossRefGoogle ScholarPubMed
Cudworth, A. G. and Woodrow, J. C. (1976). Genetic susceptibility in diabetes mellitus: analysis of the HLA association. Br Med J, 2, 846–8.CrossRefGoogle ScholarPubMed
Davies, J. L., Kawaguchi, Y., Bennett, S. T.et al. (1994). A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 371, 130–6.CrossRefGoogle ScholarPubMed
Dessen, A., Lawrence, C. M., Cupo, S., Zaller, D. M. and Wiley, D. C. (1997). X-ray crystal structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II.Immunity, 7, 473–81.CrossRefGoogle ScholarPubMed
Dib, C., Faure, S., Fizames, C.et al. (1996). A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature, 380, 152–4.CrossRefGoogle ScholarPubMed
Ebers, G. C., Sadovnick, A. D. and Veith, R. (2004). Vitamin D intake and incidence of multiple sclerosis. Neurology, 63, 939; author reply 939.CrossRefGoogle ScholarPubMed
Friese, M. A., Montalban, X., Willcox, N.et al. (2006). The value of animal models for drug development in multiple sclerosis. Brain, 129, 1940–52.CrossRef
Gillespie, K. M., Bain, S. C., Barnett, A. H.et al. (2004). The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet, 364, 1699–700.CrossRefGoogle ScholarPubMed
Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. and Vinuesa, C. G. (2005). Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature, 435, 590–7.CrossRefGoogle ScholarPubMed
Green, J., Casabonne, D. and Newton, R. (2004). Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case-control studies. Diabet Med, 21, 507–14.CrossRefGoogle ScholarPubMed
Harney, S. and Wordsworth, B. P. (2002). Genetic epidemiology of rheumatoid arthritis. Tissue Antigens, 60, 465–73.CrossRefGoogle ScholarPubMed
Hashimoto, L., Habita, C., Beressi, J. P.et al. (1994). Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature, 371, 161–4.CrossRefGoogle ScholarPubMed
Hugot, J. P., Chamaillard, M., Zouali, H.et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature, 411, 599–603.CrossRefGoogle ScholarPubMed
Hugot, J. P., Laurent-Puig, P., Gower-Rousseau, C.et al. (1996). Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature, 379, 821–3.CrossRefGoogle ScholarPubMed
Julier, C., Hyer, R. N., Davies, J.et al. (1991). Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature, 354, 155–9.CrossRefGoogle ScholarPubMed
Kelley, J., Walter, L. and Trowsdale, J. (2005). Comparative genomics of major histocompatibility complexes. Immunogenetics, 56, 683–95.CrossRefGoogle ScholarPubMed
Lang, H. L., Jacobsen, H., Ikemizu, S.et al. (2002). A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol, 3, 940–3.CrossRefGoogle ScholarPubMed
Lucassen, A. M., Screaton, G. R., Julier, C.et al. (1995). Regulation of insulin gene expression by the IDDM associated, insulin locus haplotype. Hum Mol Genet, 4, 501–6.CrossRefGoogle ScholarPubMed
Madsen, L. S., Andersson, E. C., Jansson, L.et al. (1999). A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet, 23, 343–7.CrossRefGoogle Scholar
Maeda, S., Hsu, L. C., Liu, H.et al. (2005). Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science, 307, 734–8.CrossRefGoogle ScholarPubMed
Mathew, C. G. and Lewis, C. M. (2004). Genetics of inflammatory bowel disease: progress and prospects. Hum Mol Genet, 13 Spec No 1, R161–8.CrossRefGoogle ScholarPubMed
McGovern, D. P., Hysi, P., Ahmad, T.et al. (2005). Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet, 14, 1245–50.CrossRefGoogle ScholarPubMed
Moreland, L. W. and Koopman, W. J. (1992). Infection as a cause of reactive arthritis, ankylosing spondylitis and rheumatic fever. Curr Opin Rheumatol, 4, 534–42.Google ScholarPubMed
Peltekova, V. D., Wintle, R. F., Rubin, L. A.et al. (2004). Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet, 36, 471–5.CrossRefGoogle ScholarPubMed
Rioux, J. D. and Abbas, A. K. (2005). Paths to understanding the genetic basis of autoimmune disease. Nature, 435, 584–9.CrossRefGoogle ScholarPubMed
Roderick, G. K. and Navajas, M. (2003). Genes in new environments: genetics and evolution in biological control. Nat Rev Genet, 4, 889–99.CrossRefGoogle ScholarPubMed
Sadovnick, A. D. and Ebers, G. C. (1993). Epidemiology of multiple sclerosis: a critical overview. Can J Neurol Sci, 20, 17–29.CrossRefGoogle ScholarPubMed
Satsangi, J., Parkes, M., Louis, E.et al. (1996). Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet, 14, 199–202.CrossRefGoogle ScholarPubMed
Segal, S. and Hill, A. V. (2003). Genetic susceptibility to infectious disease. Trends Microbiol, 11, 445–8.CrossRefGoogle ScholarPubMed
Siebold, C., Hansen, B. E., Wyer, J. R.et al. (2004). Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci USA, 101, 1999–2004.CrossRefGoogle ScholarPubMed
Smyth, D., Cooper, J. D., Collins, J. E.et al. (2004). Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes and evidence for its role as a general autoimmunity locus. Diabetes, 53, 3020–3.CrossRefGoogle ScholarPubMed
Sollid, L. M. (2002). Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol, 2, 647–55.CrossRefGoogle ScholarPubMed
Stoll, M., Corneliussen, B., Costello, C. M.et al. (2004). Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet, 36, 476–80.CrossRefGoogle ScholarPubMed
Svejgaard, A. and Ryder, L. P. (1994). HLA and disease associations: detecting the strongest association. Tissue Antigens, 43, 18–27.CrossRefGoogle ScholarPubMed
Taylor, J. C., Gough, S. C., Hunt, P. J.et al. (2006). A genome-wide screen in 1119 relative pairs with autoimmune thyroid disease. J Clin Endocrinol Metab, 91, 646–53.CrossRefGoogle ScholarPubMed
Todd, J. A., Acha-Orbea, H., Bell, J. I.et al. (1988). A molecular basis for MHC class II–associated autoimmunity. Science, 240, 1003–9.CrossRefGoogle ScholarPubMed
Todd, J. A., Bell, J. I. and McDevitt, H. O. (1987). HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature, 329, 599–604.CrossRefGoogle ScholarPubMed
Ueda, H., Howson, J. M., Esposito, L.et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 423, 506–11.CrossRefGoogle ScholarPubMed
Vinuesa, C. G., Cook, M. C.Angelacci, C.et al. (2005). A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature, 435, 452–8.CrossRefGoogle ScholarPubMed
Virtanen, S. M., Laara, E., Hypponen, E.et al. (2000). Cow's milk consumption, HLA-DQB1 genotype and type 1 diabetes: a nested case-control study of siblings of children with diabetes. Childhood diabetes in Finland study group. Diabetes, 49, 912–17.CrossRefGoogle ScholarPubMed
Watanabe, T., Kitani, A., Murray, P. J. and Strober, W. (2004). NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol, 5, 800–8.CrossRefGoogle ScholarPubMed
Wekerle, H. and Hohlfeld, R. (2003). Molecular mimicry in multiple sclerosis. N Engl J Med, 349, 185–6.CrossRefGoogle ScholarPubMed
Wicker, L. S., Moule, C. L., Fraser, H.et al. (2005). Natural genetic variants influencing type 1 diabetes in humans and in the NOD mouse. Novartis Found Symp, 267, 57–65; discussion 65–75.Google ScholarPubMed
Wordsworth, B. P., Lanchbury, J. S., Sakkas, L. I.et al. (1989). HLA-DR4 subtype frequencies in rheumatoid arthritis indicate that DRB1 is the major susceptibility locus within the HLA class II region. Proc Natl Acad Sci USA, 86, 10049–53.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×