Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T09:34:46.628Z Has data issue: false hasContentIssue false

24 - Necessary methodological and stem cell advances for restoration of the dopaminergic system in Parkinson's disease patients

from Part III - Therapeutic approaches in neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Ole Isacson
Affiliation:
Udall Parkinson's Disease Research Center of Excellence, Belmont, MA, USA
Kwang-Soo Kim
Affiliation:
Udall Parkinson's Disease Research Center of Excellence, Belmont, MA, USA
Ivar Mendez
Affiliation:
Division of Neurosurgery, Dalhousie University, Halifax, NS, Canada
Craig van Horne
Affiliation:
Udall Parkinson's Disease Research Center of Excellence, Belmont, MA, USA
Lars M. Bjorklund
Affiliation:
Udall Parkinson's Disease Research Center of Excellence, Belmont, MA, USA
Rosario Sanchez-Pernaute
Affiliation:
Udall Parkinson's Disease Research Center of Excellence, Belmont, MA, USA
Get access

Summary

Introduction

New therapeutic non-pharmacological methodology involves cell and synaptic renewal or replacement in the living brain to restore function of neuronal systems, including the dopaminergic (DA) system in Parkinson's disease. Understanding the cell biological principles for generating functional DA neurons in lieu of the diseased can provide many new avenues for better treatment of patients with PD. Recent laboratory work has focused on using stem cells as a starting point for exogenous or endogenous derivation of the optimal DA cells for repair (Fig. 24.1). Using fetal DA cell therapy in PD patients (Piccini et al., 1999, 2000; Freed et al., 2001; Isacson et al., 2001; Mendez et al., 2002a) and stem cell-derived DA neurons in animal models (Bjorklund et al., 2002; Kim et al., 2002), it has been demonstrated that functional motor deficits associated with PD can be reduced after application of this new technology. Evidence shows that the underlying disease process does not destroy the transplanted fetal DA cells, although the patient's original DA system degeneration progresses (Piccini et al., 1999, 2000). The optimal DA cell regeneration system would reconstitute a normal network capable of restoring feedback-controlled release of DA in the nigro-striatal system (Bjorklund & Isacson, 2002). The success of cell therapy for neurological diseases is limited by access to preparation and development of highly specialized dopaminergic neurons found in the A9 and A10 region of the substantia nigra (SN) in the ventral mesencephalon, as well as technical and surgical steps associated with transplantation.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 363 - 380
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrous, N., Guy, J., Vigny, A., Calas, A., LeMoal, M. & Herman, J.- P. (1988). Development of intracerebral dopaminergic grafts: A combined immunohistochemical and autoradiographic study of its time course and environmental influences. J. Comp. Neurol., 273, 26–41CrossRefGoogle ScholarPubMed
Akerud, P., Canals, J. M., Snyder, E. Y. & Arenas, E. (2001). Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. J. Neurosci., 21, 8108–18CrossRefGoogle Scholar
Alvarez-Buylla, A. & Garcia-Verdugo, J. M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci., 22, 629–34CrossRefGoogle ScholarPubMed
Backlund, E., Granberg, P. & Hamberger, B. (1985). Transplantation of adrenal medullary tissue to striatum in parkinsonism. J. Neurosurg., 62, 169–73CrossRefGoogle ScholarPubMed
Benraiss, A., Lerner, K., Chmielnicki, E.et al. (2000). Adenoviral transduction of the ventricular wall with a BDNF expression vector induces neuronal recruitment from endogenous progenitor cells in the adult forebrain. Mol. Ther., 1, S35–6Google Scholar
Bjorklund, A., Schmidt, R. H. & Stenevi, U. (1980). Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res., 212, 39–45CrossRefGoogle ScholarPubMed
Bjorklund, L. M. & Isacson, O. (2002). Regulation of dopamine cell type and transmitter function in fetal and stem cell transplantation for Parkinson's disease. Prog. Brain Res., 138, 411–20CrossRefGoogle ScholarPubMed
Bjorklund, L. M., Sánchez-Pernaute, R., Chung, S.et al. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci., USA, 99, 2344–9CrossRefGoogle Scholar
Blanchard, V., Raisman-Vozari, R., Vyas, S.et al. (1994). Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon. Brain Res. Mol. Brain Res., 22, 29–38CrossRefGoogle ScholarPubMed
Brownell, A. L., Livni, E., Galpern, W. & Isacson, O. (1998). In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants. Ann. Neurol., 43, 387–90CrossRefGoogle ScholarPubMed
Brundin, P. & Bjorklund, A. (1998). Survival of expanded dopaminergic precursors is critical for clinical trials. Nat. Neurosci., 1, 537CrossRefGoogle ScholarPubMed
Brundin, P., Isacson, O. & Björklund, A. (1985). Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res., 331, 251–9CrossRefGoogle ScholarPubMed
Brundin, P., Pogarell, O., Hagell, P.et al. (2000). Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain, 123 (7), 1380–90CrossRefGoogle ScholarPubMed
Burns, L. H., Pakzaban, P., Deacon, T. W.et al. (1995). Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience, 64, 1007–17CrossRefGoogle ScholarPubMed
Castillo, S. O., Baffi, J. S., Palkovits, M.et al. (1998). Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol. Cell Neurosci., 11, 36–46CrossRefGoogle Scholar
Check, E. (2002). Parkinson's patients show positive response to implants. Nature, 416, 666CrossRefGoogle ScholarPubMed
Chung, S., Sonntag, K. C., Andersson, T.et al. (2002). Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur. J. Neurosci., 16, 1829–38CrossRefGoogle ScholarPubMed
Ciliax, B. J., Drash, G. W., Staley, J. K.et al. (1999). Immunocytochemical localization of the dopamine transporter in human brain. J. Comp. Neurol., 409, 38–563.0.CO;2-1>CrossRefGoogle ScholarPubMed
Clarke, D. J., Brundin, P., Strecker, R. E., Nilsson, O. G., Bjorklund, A. & Lindvall, O. (1988). Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp. Brain Res., 73, 115–26CrossRefGoogle Scholar
Collier, T., Redmond, D. J., Roth, R., Elsworth, J., Taylor, J. & Sladek, J. J. (1997). Metabolic energy capacity of dopaminergic grafts and the implanted striatum in parkinsonian nonhuman primates as visualized with cytochrome oxidase histochemistry. Cell Transpl., 6, 135–40CrossRefGoogle ScholarPubMed
Costantini, L. C., Lin, L. & Isacson, O. (1997). Medial fetal ventral mesencephalon: a preferred source for dopamine neuron grafts. Neuroreport, 8, 2253–7CrossRefGoogle ScholarPubMed
Costantini, L. C. & Snyder-Keller, A. (1997). Co-transplantation of fetal lateral ganglionic eminence and ventral mesencephalon can augment function and development of intrastriatal transplants. Exp. Neurol., 145, 214–27CrossRefGoogle ScholarPubMed
Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S. & Kooy, D. (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell population in the adult mouse brain. J. Neurosci., 16, 2649–58CrossRefGoogle ScholarPubMed
Dahlstrom, A. & Fuxe, K. (1964). Localization of monoamines in the lower brain stem. Experientia, 20, 398–9CrossRefGoogle ScholarPubMed
Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. (1999). The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain, 122, 1421–36CrossRefGoogle Scholar
Danielian, P. S. & McMahon, A. P. (1996). Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature, 383, 332–4CrossRefGoogle ScholarPubMed
Deacon, T., Dinsmore, J., Costantini, L., Ratliff, J. & Isacson, O. (1998). Blastula-stage stem cells differentiate into dopaminergic and serotonergic neurons after transplantation. Exp. Neurol., 149, 28–41CrossRefGoogle ScholarPubMed
Defer, G. L., Geny, C., Ricolfi, F.et al. (1996). Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain, 119, 41–50CrossRefGoogle ScholarPubMed
Doucet, G., Murata, Y., Brundin, P.et al. (1989). Host afferents into intrastriatal transplants of fetal ventral mesencephalon. Exp Neurol., 106, 1–19CrossRefGoogle ScholarPubMed
Dunnett, S. B., Bunch, S. T., Gage, F. H. & Bjorklund, A. (1984). Dopamine-rich transplants in rats with 6-OHDA lesions of the ventral tegmental area. 1. Effects on spontaneous and drug-induced locomotor activity. Behav. Brain Res., 13, 71–82CrossRefGoogle ScholarPubMed
Eberhardt, O., Coelin, R. V., Kugler, S.et al. (2002). Protection by synergistic effects of adenovirus-mediated X-linked chromosome-linked inhibitor of apoptosis and glial-derived neurotrophic factor gene transfer in the 1-methyl-4-pheyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Neurosci., 20, 9126–34CrossRefGoogle Scholar
Falkenburger, B. H., Barstow, K. L. & Mintz, I. M. (2001). Dendrodendritic inhibition through reversal of dopamine transport. Science, 293, 2465–70CrossRefGoogle ScholarPubMed
Fallon, J., Reid, S., Kinyamu, R.et al. (2000). In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl Acad. Sci., USA, 97, 14686–91CrossRefGoogle ScholarPubMed
Flax, J. D., Aurora, S., Yang, C.et al. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol., 16, 1033–9Google ScholarPubMed
Freed, C. R., Breeze, R. E., Rosenberg, N. L.et al. (1990). Transplantation of human fetal dopamine cells for Parkinson's disease. Results at 1 year. Arch. Neurol., 47, 505–12CrossRefGoogle ScholarPubMed
Freed, C. R., Breeze, R. E., Rosenberg, N. L.et al. (1992). Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N. Engl. J. Med., 327, 1549–55CrossRefGoogle ScholarPubMed
Freed, C. R., Greene, P. E., Breeze, R. E.et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med., 344, 710–19CrossRefGoogle ScholarPubMed
Freeman, A. S., Meltzer, L. T. & Bunney, B. S. (1985). Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci., 36, 1983–94CrossRefGoogle ScholarPubMed
Freeman, T. B., Olanow, C. W., Hauser, R. A.et al. (1995a). Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. Ann. Neurol., 38, 379–88CrossRefGoogle Scholar
Frim, D. M., Uhler, T. A., Galpern, W. R., Beal, M. F., Breakefield, X. O. & Isacson, O. (1994). Biologically delivered BDNF increases dopaminergic neuronal survival in a rat model of Parkinson's disease. Proc. Natl Acad. Sci., USA, 91, 5104–8CrossRefGoogle Scholar
Galpern, W. R., Burns, L. H., Deacon, T. W., Dinsmore, J. & Isacson, O. (1996). Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson's disease: functional recovery and graft morphology. Exp. Neurol., 140, 1–13CrossRefGoogle Scholar
Gaudin, D., Rioux, L. & Bedard, P. (1990). Fetal dopamine neuron transplants prevent behavioral supersensitivity induced by repeated administration of L-Dopa in the rat. Brain Res., 506, 166–8CrossRefGoogle ScholarPubMed
Gerfen, C., Keefe, K. & Steiner, H. (1998). Dopamine-mediated gene regulation in the striatum. Adv. Pharmacol., 42, 670–3CrossRefGoogle ScholarPubMed
Gerfen, C. R., Herkenham, M. & Thibault, J. (1987). The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J. Neurosci., 7, 3915–34CrossRefGoogle ScholarPubMed
German, D. C., Manaye, K. F., Sonsalla, P. K. & Brooks, B. A. (1992). Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann. NY Acad. Sci., 648, 42–62CrossRefGoogle ScholarPubMed
Gibb, W. R. (1992). Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease. Brain Res., 581, 283–91CrossRefGoogle ScholarPubMed
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24CrossRefGoogle ScholarPubMed
Granholm, A., Mott, J., Bowenkamp, K.et al. (1997). Glial cell line-derived neurotrophic factor improves survival of ventral mesencephalic grafts to the 6-hydroxydopamine lesioned striatum. Exp. Brain Res., 116, 29–38CrossRefGoogle ScholarPubMed
Graybiel, A. M., Hirsch, E. & Agid, Y. (1990). The nigrostriatal system in Parkinson's disease. In Advances in Neurology, ed. M. B. Streifler, A. D. Korczyn, E. Melamed & M. B. H. Youdim, pp. 17–29. New York: Raven Press
Haber, S. N., Ryoo, H., Cox, C. & Lu, W. (1995). Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J. Comp. Neurol., 362, 400–10CrossRefGoogle ScholarPubMed
Hagell, P., Schrag, A., Piccini, P.et al. (1999). Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain, 122 (6), 1121–32CrossRefGoogle ScholarPubMed
Hagell, P., Piccini, P., Bjorklund, A.et al. (2002). Dyskinesias following neural transplantation in Parkinson's disease. Nat. Neurosc., 5, 627–8CrossRefGoogle ScholarPubMed
Hantraye, P., Riche, D., Maziere, M. & Isacson, O. (1990). A primate model of Huntington's disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp. Neurol., 108, 91–104CrossRefGoogle ScholarPubMed
Hantraye, P. (1992). Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc. Natl Acad. Sci., USA, 89, 4187–91CrossRefGoogle Scholar
Haque, N. S., LeBlanc, C. J. & Isacson, O. (1997). Differential dissection of the rat E16 ventral mesencephalon and survival and reinnervation of the 6-OHDA-lesioned striatum by a subset of aldehyde dehydrogenase-positive TH neurons. Cell Transpl., 6, 239–48CrossRefGoogle ScholarPubMed
Hauser, R. A., Freeman, T. B., Snow, B. J.et al. (1999). Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol., 56, 179–87CrossRefGoogle ScholarPubMed
Hemmati-Brivanlou, A. & Melton, D. (1997). Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell, 88, 13–17CrossRefGoogle ScholarPubMed
Henderson, B. T., Clough, C. G., Hughes, R. C., Hitchcock, E. R. & Kenny, B. G. (1991). Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson's disease. Arch. Neurol., 48, 822–7CrossRefGoogle ScholarPubMed
Hernit-Grant, C. S. & Macklis, J. D. (1996). Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections. Exp. Neurol., 139, 131–42CrossRefGoogle ScholarPubMed
Iacopino, A. M. & Christakos, S. (1990). Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl Acad. Sci., USA, 87, 4078–82CrossRefGoogle ScholarPubMed
Isacson, O. & Deacon, T. W. (1996). Specific axon guidance factors persist in the mature rat brain: evidence from fetal neuronal xenografts. Neuroscience, 75, 827–37CrossRefGoogle Scholar
Isacson, O. & Deacon, T. W. (1997). Neural transplantation studies reveal the brain's capacity for continuous reconstruction. Trends in Neurosci., 20, 477–82CrossRefGoogle ScholarPubMed
Isacson, O., Deacon, T. W., Pakzaban, P., Galpern, W. R., Dinsmore, J. & Burns, L. H. (1995). Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med., 1, 1189–94CrossRefGoogle Scholar
Isacson, O., Bjorklund, L. & Pernaute, R. S. (2001). Parkinson's disease: interpretations of transplantation study are erroneous. Nat. Neurosci., 4, 553CrossRefGoogle ScholarPubMed
Ito, H., Goto, S., Sakamoto, S. & Hirano, A. (1992). Calbindin-D28k in the basal ganglia of patients with parkinsonism. Ann. Neurol., 32, 543–50CrossRefGoogle ScholarPubMed
Jacques, D. B., Kopyov, O. V., Eagle, K. S., Carter, T. & Lieberman, A. (1999). Outcomes and complications of fetal tissue transplantation in Parkinson's disease. Stereotact. Funct. Neurosurg., 72, 219–24CrossRefGoogle ScholarPubMed
Janec, E. & Burke, R. E. (1993). Naturally occuring cell death during postnatal development of the substantia nigra pars compacta of rat. Mol. Cell Neurosci., 4, 30–5CrossRefGoogle Scholar
Johansson, M., Friedemann, M., Hoffer, B. & Stromberg, I. (1995). Effects of glial cell line-derived neurotrophic factor on developing and mature ventral mesencephalic grafts in oculo. Exp. Neurol., 134, 25–34CrossRefGoogle ScholarPubMed
Johnson, S. W., Seutin, V. & North, R. A. (1992). Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science, 258, 665–7CrossRefGoogle ScholarPubMed
Kawasaki, H., Mizuseki, K., Nishikawa, S.et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28, 31–40CrossRefGoogle ScholarPubMed
Kim, J. H., Auerbach, J. M., Rodriguez-Gomez, J. A.et al. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 418, 50–6CrossRefGoogle Scholar
Kim, K. S., Kim, C. H., Hwang, D. Y.et al. (2003). The orphan nuclear receptor Nurr1 directly transactivates the promotor of the tyrosine hydroxylase gene, but not the dopamine b-hydroxylase gene, in a cell-specific manner. J. Neurochem., 85, 622–34CrossRefGoogle Scholar
Kopyov, O. V., Jacques, D., Lieberman, A., Duma, C. M. & Rogers, R. L. (1996). Clinical study of fetal mesencephalic intracerebral transplants for the treatment of Parkinson's disease. Cell Transpl., 5, 327–37CrossRefGoogle ScholarPubMed
Kopyov, O. V., Jacques, D. S., Lieberman, A., Duma, C. M. & Rogers, R. L. (1997). Outcome following intrastriatal fetal mesencephalic grafts for Parkinson's patients is directly related to the volume of grafted tissue. Exp. Neurol., 146, 536–45CrossRefGoogle ScholarPubMed
Kordower, J., Freeman, T., Chen, E.et al. (1998). Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. Mov. Disord., 13, 383–93CrossRefGoogle Scholar
Kordower, J. H., Freeman, T. B., Snow, B. J.et al. (1995). Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med., 332, 1118–24CrossRefGoogle Scholar
Kordower, J. H., Rosenstein, J. M., Collier, T. J.et al. (1996). Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol., 370, 203–303.0.CO;2-6>CrossRefGoogle Scholar
Lebel, M., Gauthier, Y., Moreau, A. & Drouin, J. (2001). Pitz3 activates mouse tyrosine hydroxylase promoter via a high-affinity binding site. J. Neurochem., 77, 558–67CrossRefGoogle Scholar
Lee, C. S., Cenci, M. A., Schulzer, M. & Bjorklund, A. (2000a). Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson's disease. Brain, 123, 1365–79CrossRefGoogle Scholar
Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M. & McKay, R. D. (2000b). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol., 18, 675–9CrossRefGoogle Scholar
Leigh, K., Elisevich, K. & Rogers, K. A. (1994). Vascularisation and microvascular permeability in solid versus cell-suspension embryonic neural grafts. J. Neurosurg., 81, 272–83CrossRefGoogle ScholarPubMed
Levivier, M., Dethy, S., Rodesch, F.et al. (1997). Intracerebral transplantation of fetal ventral mesencephalon for patients with advanced Parkinson's disease. Methodology and 6-month to 1-year follow-up in 3 patients. Stereotact. Funct. Neurosurg., 69, 99–111CrossRefGoogle ScholarPubMed
Lim, D. A., Tramontin, A. D., Trevejo, J. M. & Alverez-Buylla, A. (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 28, 713–26CrossRefGoogle ScholarPubMed
Lindvall, O., Brundin, P., Widner, H.et al. (1990). Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science, 247, 574–7CrossRefGoogle ScholarPubMed
Lindvall, O. & Hagell, P. (2000). Clinical observations after neural transplantation in Parkinson's disease. Prog. Brain Res., 127, 299–320CrossRefGoogle ScholarPubMed
Lindvall, O., Rehncrona, S., Gustavi, B.et al. (1988). Fetal dopamine-rich mesencephalic grafts in Parkinson's disease. Lancet, II, 1483–4CrossRefGoogle Scholar
Lindvall, O., Rehncrona, S., Brundin, P.et al. (1989). Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch. Neurol., 46, 615–31CrossRefGoogle Scholar
Lindvall, O., Widner, H., Rehncrona, S.et al. (1992). Transplantation of fetal dopamine neurons in Parkinson's disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann. Neurol., 31, 155–65CrossRefGoogle ScholarPubMed
Ljungberg, T., Apicella, P. & Schultz, W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol., 67, 145–63CrossRefGoogle ScholarPubMed
Ma, Y., Feigin, A., Dhawan, V.et al. (2002). Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol., 52, 628–34CrossRefGoogle ScholarPubMed
Madrazo, I., Leon, V. & Torres, C. (1988). Transplantation of fetal substantia nigra and adrenal medulla to the caudate putamen in two patients with Parkinson's disease. N. Engl. J. Med., 318, 51Google ScholarPubMed
Mahalik, T., Finger, T., Stromberg, I. & Olson, L. (1985). Substantia nigra transplants into denervated striatum of the rat: ultrastructure of graft and host interconnections. J. Comp. Neurol., 240, 60–70CrossRefGoogle ScholarPubMed
Mandel, R., Rendahl, K., Spratt, S., Snyder, R., Cohen, L. & Leff, S. (1998). Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson's disease. J. Neurosci., 18, 4271–84CrossRefGoogle Scholar
Marsden, C. D. (1982). Basal ganglia disease. Lancet, II (8308), 1141–7CrossRefGoogle Scholar
Mayer, E., Fawcett, J. W. & Dunnett, S. B. (1993). Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons. II. Effects on nigral transplants in vivo. Neuroscience, 56, 389–98CrossRefGoogle ScholarPubMed
McCaffery, P. & Drager, U. C. (1994). High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl Acad. Sci., USA, 91, 7772–6CrossRefGoogle ScholarPubMed
McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. (1992). The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell, 69, 581–95CrossRefGoogle ScholarPubMed
Mendez, I., Dagher, A. & Hong, M. (2000a). Simultaneous intraputaminal and intranigral fetal dopaminergic grafts in Parkinson's disease: first clinical trials. Exp. Neurol., 164, 464Google Scholar
Mendez, I., Hong, M., Smith, S., Dagher, A. & Desrosiers, J. (2000b). Neural transplantation cannula and microinjector system: experimental and clinical experience. Technical note. J. Neurosurg., 92, 493–9CrossRefGoogle Scholar
Mendez, I., Dagher, A., Hong, M.et al. (2002a). Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J. Neurosurg., 96, 589–96CrossRefGoogle Scholar
Meyer, M., Zimmer, J., Seiler, R. W. & Widmer, H. R. (1999). GDNF increases the density of cells containing calbindin but not of cells containing calretinin in cultured rat and human fetal nigral tissue. Cell Transpl., 8, 25–36CrossRefGoogle Scholar
Millen, K. J., Wurst, W., Herrup, K. & Joyner, A. L. (1994). Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development, 120, 695–706Google ScholarPubMed
Molina, H., Quinones-Molina, R., Munoz, J.et al. (1994). Neurotransplantation in Parkinson's disease: from open microsurgery to bilateral stereotactic approach: first clinical trial using microelectrode recording technique. Stereotact. Funct. Neurosurg., 62, 204–8CrossRefGoogle ScholarPubMed
Montgomery, R., Warner, M., Lum, B. & Spear, P. (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell, 87, 427–36CrossRefGoogle ScholarPubMed
Nakamura, T., Dhawan, V., Chaly, T.et al. (2001). Blinded positron emission tomography study of dopamine cell implantation for Parkinson's disease. Ann. Neurol., 50, 181–7CrossRefGoogle ScholarPubMed
Nakao, N., Ogura, M., Nakai, K. & Itakura, T. (1998). Intrastriatal mesencephalic grafts affect neuronal activity in basal ganglia nuclei and their target structures in a rat model of Parkinson's disease. J. Neurosci., 18, 1806–17CrossRefGoogle Scholar
Nikkah, G., Cunningham, M. G., Jodicke, A., Knappe, U. & Bjorklund, A. (1994). Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res., 633, 133–43CrossRefGoogle Scholar
Nilsson, O. G., Clarke, D. J., Brundin, P. & Bjorklund, A. (1988). Comparison of growth and reinnervation properties of cholinergic neurons from different brain regions grafted to the hippocampus. J. Comp. Neurol., 268, 204–22CrossRefGoogle ScholarPubMed
Nutt, J. G., Obeso, J. A. & Stocchi, F. (2000). Continuous dopamine-receptor stimulation in advanced Parkinson's disease. Trends Neurosci., 23, S109–15CrossRefGoogle ScholarPubMed
Olanow, C. W. (2002a). Surgical therapy for Parkinson's disease. Eur. J. Neurol., 9 Suppl 3, 31–9CrossRefGoogle Scholar
Olanow, C. W. (2002b). Transplantation for Parkinson's disease: pros, cons, and where do we go from here?Mov. Disord., 17, S15Google Scholar
Olanow, C. W. & Obeso, J. A. (2000). Preventing levodopa-induced dyskinesias. Ann. Neurol., 47, 167–78Google ScholarPubMed
Olanow, C. W. & Tatton, W. G. (2000). Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci., 22, 123–44CrossRefGoogle Scholar
Onn, S.-P., West, A. R. & Grace, A. A. (2000). Dopamine-mediated regulation of striatal neuronal and network interactions. Trends Neurosci., 23, S45–56CrossRefGoogle ScholarPubMed
Peschanski, M., Defer, G., N'Guyen, J. P.et al. (1994). Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson's disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain, 117 (3), 487–99CrossRefGoogle ScholarPubMed
Piccini, P., Brooks, D. J., Bjorklund, A.et al. (1999). Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci., 2, 1137–40CrossRefGoogle Scholar
Piccini, P., Lindvall, O., Bjorklund, A.et al. (2000). Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann. Neurol., 48, 689–953.0.CO;2-N>CrossRefGoogle ScholarPubMed
Rakic, P. (2002). Adult neurogenesis in mammals: an identity crisis. J. Neurosci., 22, 614–18CrossRefGoogle Scholar
Ramachandran, A. C., Bartlett, L. E. & Mendez, I. M. (2002). A multiple target neural transplantation strategy for Parkinson's disease. Rev. Neurosci., 13, 243–56CrossRefGoogle ScholarPubMed
Redmond, D. E. Jr., Leranth, C., Spencer, D. D.et al. (1990). Fetal neural graft survival. Lancet, 336, 820–2CrossRefGoogle ScholarPubMed
Sanghera, M. K., Manaye, K., McMahon, A., Sonsalla, P. K. & German, D. C. (1997). Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. Neuroreport, 8, 3327–31CrossRefGoogle ScholarPubMed
Saucedo-Cardenas, O., Quintana-Hau, J. D., Le, W. D.et al. (1998). Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci., USA, 95, 4013–18CrossRefGoogle ScholarPubMed
Schultzberg, M., Dunnett, S. B., Bjorklund, A.et al. (1984). Dopamine and cholecystokinin immunoreactive neurones in mesencephalic grafts reinnervating the neostriatum: evidence for selective growth regulation. Neuroscience, 12, 17–32CrossRefGoogle ScholarPubMed
Schumacher, J. M., Short, M. P., Hyman, B. T., Breakefield, X. O. & Isacson, O. (1991). Intracerebral implantation of nerve growth factor-producing fibroblasts protects striatum against neurotoxic levels of excitatory amino acids. Neuroscience, 45, 561–70CrossRefGoogle ScholarPubMed
Schumacher, J., Ellias, S., Palmer, E.et al. (2000). Transplantation of embryonic porcine mesencephalic tissue in patients with Parkinson's disease. Neurology, 54, 1042–50CrossRefGoogle Scholar
Semina, E. V., Ferrell, R. E., Mintz-Hittner, H. A.et al. (1998). A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat. Genet., 19, 167–70CrossRefGoogle ScholarPubMed
Semina, E. V., Reiter, R. S. & Murray, J. C. (1997). Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum. Mol. Genet., 6, 2109–16CrossRefGoogle ScholarPubMed
Shimazaki, T., Shingo, T. & Weiss, S. (2001). The ciliary neurotrophic factor/leukemia inhibitory factor/gc130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci., 21, 7642–53CrossRefGoogle ScholarPubMed
Simon, H. H., Saueressig, H., Wurst, W., Goulding, M. D. & O'Leary, D. D. (2001). Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci., 21, 3126–34CrossRefGoogle ScholarPubMed
Smidt, M. P., Schaick, H. S., Lanctot, C.et al. (1997). A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci., USA, 94, 13305–10CrossRefGoogle ScholarPubMed
Smidt, M. P., Asbreuk, C. H., Cox, J. J., Chen, H., Johnson, R. L. & Burbach, J. P. (2000). A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat. Neurosci., 3, 337–41CrossRefGoogle ScholarPubMed
Sotelo, C. & Alvarado-Mallart, R. M. (1987). Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature, 327, 421–3CrossRefGoogle ScholarPubMed
Spencer, D. D., Robbins, R. J., Naftolin, F.et al. (1992). Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. N. Engl. J. Med., 327, 1541–8CrossRefGoogle ScholarPubMed
Strecker, R. E. & Jacobs, B. L. (1985). Substantia nigra dopaminergic unit activity in behaving cats: effects of arousal on spontaneous discharge and sensory evoked activity. Brain Res., 361, 339–50CrossRefGoogle Scholar
Strecker, R. E., Sharp, T., Brundin, P., Zetterstrom, T., Ungerstedt, U. & Bjorklund, A. (1987). Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis. Neuroscience, 22, 169–78CrossRefGoogle ScholarPubMed
Studer, L., Tabar, V. & McKay, R. D. (1998). Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci., 1, 290–5CrossRefGoogle ScholarPubMed
Tornqvist, N., Hermanson, E., Perlmann, T. & Stromberg, I. (2002). Generation of tyrosine hydroxylase-immunoreactive neurons in ventral mesencephalic tissue of Nurr1 deficient mice. Brain Res. Dev. Brain Res., 133, 37–47CrossRefGoogle ScholarPubMed
Venna, N., Sabin, T., Ordia, J. & Mark, V. (1984). Treatment of severe Parkinson's disease by intraventricular injection of dopamine. Appl. Neurophysiol., 47, 62–4Google ScholarPubMed
Wagner, J., Akerud, P., Castro, D. S.et al. (1999). Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol., 17, 653–9CrossRefGoogle ScholarPubMed
Wallen, A. A., Castro, D. S., Zetterstrom, R. H.et al. (2001). Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol. Cell. Neurosci., 18, 649–63CrossRefGoogle Scholar
Wenning, G. K., Odin, P., Morrish, P.et al. (1997). Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann. Neurol., 42, 95–107CrossRefGoogle Scholar
Widner, H., Tetrud, J., Rehncrona, S.et al. (1992). Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. N. Engl. J. Med., 327, 1556–63CrossRefGoogle Scholar
Wurst, W., Auerbach, A. B. & Joyner, A. L. (1994). Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development, 120, 2065–75Google ScholarPubMed
Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. (1990). Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res., 526, 303–7CrossRefGoogle ScholarPubMed
Zetterstrom, R. H., Solomin, L., Jansson, L., Hoffer, B. J., Olson, L. & Perlmann, T. (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Science, 276, 248–50CrossRefGoogle ScholarPubMed
Zetterstrom, T., Brundin, P., Gage, F. H.et al. (1986). In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res., 362, 344–9CrossRefGoogle Scholar
Zetterstrom, T. & Ungerstedt, U. (1984). Effects of apomorphine on the in vivo release of dopamine and its metabolites, studied by brain dialysis. Eur. J. Pharmacol., 97, 29–36CrossRefGoogle ScholarPubMed
Zurn, A. D., Widmer, H. R. & Aebischer, P. (2001). Sustained delivery of GDNF: towards a treatment for Parkinson's disease. Brain Res., 36, 222–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×