Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T22:25:46.406Z Has data issue: false hasContentIssue false

42 - Current and potential treatments of Parkinson's disease

from Part VII - Parkinson's and related movement disorders

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Clifford W. Shults
Affiliation:
Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA and VA San Diego Healthcare System, Dan Diego, CA, USA
Get access

Summary

Parkinson's disease (PD) is a progressive, degenerative neurological disorder characterized by rest tremor, bradykinesia, cogwheel rigidity and postural instability (Lang & Lozano, 1998). In the later stages of the illness approximately 30–40% of patients will develop cognitive compromise. The cardinal pathological features of PD are loss of neurons on the substantia nigra pars compacta (SNpc) and the presence of eosinophilic, intracytoplasmic inclusions, and Lewy bodies (Braak & Braak, 2000). The neurons of the SNpc project primarily to the caudate and putamen, which are referred to collectively as the striatum, and utilize the neurotransmitter dopamine. Dopamine is severely reduced in the SNpc and striatum in parkinsonian brains (Hornykiewicz, 2002). Although the loss of neurons is most conspicuous in the SNpc, neuronal loss and Lewy bodies are found in a number of brain regions, e.g. locus ceruleus, entorhinal region and amygdala (Braak & Braak, 2000). The neuronal loss and the presence of Lewy bodies in regions other than the SNpc suggest that although treatments that target only the nigrostriatal dopaminergic system may substantially benefit patients, they are unlikely to completely resolve the deficits of PD.

The following review presents a strategic framework through which to consider targets for therapies of PD. In some of the areas we are just beginning to have treatments, e.g. slowing the progression of the disease, and in others we have well-established therapies, e.g. augmentation of the function of the remaining dopaminergic system.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 612 - 622
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarsland, D., Laake, K., Larsen, J. P. & Janvin, C. (2002). Donepezil for cognitive impairment in Parkinson's disease: a randomised controlled study. J. Neurol., Neurosurg. Psychiatr., 72, 708–12CrossRefGoogle ScholarPubMed
Aarsland, D., Andersen, K., Larsen, J. P., Lolk, A. & Kragh-Sorensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch. Neurol., 60, 387–92CrossRefGoogle Scholar
Adler, C. H., Singer, C., O'Brien, C. et al. (1998). Randomized, placebo-controlled study of tolcapone in patients with fluctuating Parkinson disease treated with levodopacarbidopa. Tolcapone Fluctuator Study Group III. Arch. Neurol., 55, 1089–95CrossRefGoogle Scholar
Alam, Z. I., Daniel, S. E., Lees, A. J.et al. (1997). A generalized increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J. Neurochemi., 69 (3), 1326–9CrossRefGoogle Scholar
Andersen, J. K. (2001). Does neuronal loss in Parkinson's disease involve programmed cell death?Bioessays, 23 (7), 640–6CrossRefGoogle ScholarPubMed
Barone, P., Bravi, D., Bermejo-Pareja, F.et al. (1999). Pergolide monotherapy in the treatment of early PD. A randomized controlled study. Neurology, 53, 573–9CrossRefGoogle ScholarPubMed
Beal, M. F. (2002). Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med., 32 (9), 797–803CrossRefGoogle ScholarPubMed
Björklund, A. (2000). Cell replacement strategies for neurodegenerative disorders. Novartis Foundation Symposium, 231, 7–15; discussion 16–20Google ScholarPubMed
Braak, H. & Braak, E. (2000). Pathoanatomy of Parkinson's disease. J. Neurol.) 247 (2), II3–10Google ScholarPubMed
Brooks, D. J., Abbott, R. J., Lees, A. J.et al. (1998). A placebo-controlled evaluation of ropinirole, a novel D2 agonist, as sole dopaminergic therapy in Parkinson's disease. Clin. Neuropharmacol., 21, 101–7Google ScholarPubMed
Burchiel, K. J., Anderson, V. C., Favre, J.et al. (1999). Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson's disease: results of a randomized, blinded pilot study. Neurosurgery, 45 (6), 1375–82CrossRefGoogle ScholarPubMed
Butzer, J. F., Silver, D. E. & Sans, A. L. (1975). Amantadine in Parkinson's disease. A double-blind, placebo-controlled, crossover study with long-term follow-up. Neurology, 25, 603–6Google ScholarPubMed
Calne, D. B., Techenne, P. F., Claveria, L. E.et al. (1974). Bromocriptine in Parkinsonism. Br. Med. J., 4, 442–4CrossRefGoogle ScholarPubMed
Cantello, R., Riccio, A., Gilli, M.et al. (1986). Bornaprine vs placebo in Parkinson disease: double-blind controlled cross-over trial in 30 patients. Ital. J. Neurol. Sci., 7, 139–43CrossRefGoogle Scholar
Chung, K. K., Dawson, V. L. & Dawson, T. M. (2001). The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci., 24 (11 Suppl), S7–14CrossRefGoogle ScholarPubMed
Cotzias, G. C., Papavasiliou, P. S. & Gellene, R. (1969). Modification of Parkinsonism-chronic treatment with L-dopa. N. Engl. J. Med., 280, 337–45CrossRefGoogle ScholarPubMed
Bie, R. M., Haan, R. J., Nijssen, P. C.et al. (1999). Unilateral pallidotomy in Parkinson's disease: a randomised, single-blind, multicentre trial. Lancet, 354 (9191), 1665–9CrossRefGoogle ScholarPubMed
Bie, R. M., Haan, R. J., Schuurman, P. R.et al. (2002). Morbidity and mortality following pallidotomy in Parkinson's disease: a systematic review. Neurology, 58 (7), 1008–12CrossRefGoogle ScholarPubMed
Dexter, D. T., Carter, C. J., Wells, F. R.et al. (1989). Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem., 52 (2), 381–9CrossRefGoogle ScholarPubMed
Drukarch, B. & Muiswinkel, F. L. (2000). Drug treatment of Parkinson's disease. Time for phase II. Biochem. Pharmacol., 59 (9), 1023–31CrossRefGoogle ScholarPubMed
Du, Y., Ma, Z., Lin, S.et al. (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA, 98 (25), 14669–74CrossRefGoogle ScholarPubMed
Dupont, E., Anderson, A., Boqs, J.et al. (1996). Sustained-release Madopar HBS compared with standard Madopar in the long-term treatment of de novo parkinsonian patients. Acta Neurol. Scand., 93, 14–20CrossRefGoogle ScholarPubMed
Eberling, J. L., Pivirotto, P., Bringas, J.et al. (2002). The immunophilin ligand GPI-1046 does not have neuroregenerative effects in MPTP-treated monkeys. Exp. Neurol., 178 (2), 236–42CrossRefGoogle Scholar
Etminan, M., Samii, A., Takkouche, B.et al. (2001). Increased risk of somnolence with the new dopamine agonists in patients with Parkinson's disease: a meta-analysis of randomised controlled trials. Drug Safety, 24 (11), 863–8CrossRefGoogle ScholarPubMed
Freed, C. R., Greene, P. E., Breeze, R. E.et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson's disease. New Engl. J. Med., 344 (10), 710–19CrossRefGoogle ScholarPubMed
Furukawa, Y., Vigouroux, S., Wong, H.et al. (2002). Brain proteasomal function in sporadic Parkinson's disease and related disorders. Ann. Neurol., 51 (6), 779–82CrossRefGoogle ScholarPubMed
Galvin, J. E., Lee, V. M., Schmidt, M. L.et al. (1999). Pathobiology of the Lewy body. Adv. Neurol., 80, 313–24Google ScholarPubMed
Giasson, B. I. & Lee, V. M. (2001). Parkin and the molecular pathways of Parkinson's disease. Neuron, 31 (6), 885–8CrossRefGoogle ScholarPubMed
Giasson, B. I., Duda, J. E., Murray, I. V.et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290 (5493), 985–9CrossRefGoogle ScholarPubMed
Gill, S. S., Patel, N. K., Hotton, G. R., O'Sullivan, K., et al. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med., 9 (5), 589–95CrossRefGoogle ScholarPubMed
Goetz, C. G., Blasucci, L. M., Leurgans, S. & Pappert, E. J. (2000). Olanzapine and clozapine: comparative effects on motor function in hallucinating PD patients. Neurology, 55, 789–94CrossRefGoogle ScholarPubMed
Gold, B. G. & Nutt, J. G. (2002). Neuroimmunophilin ligands in the treatment of Parkinson's disease. Curr. Opin. Pharmacol., 2 (1), 82–6CrossRefGoogle ScholarPubMed
Guttman, M. and the International Pramipexole-Bromocriptine Study Group (1997). Double-blind comparison of pramipexole and bromocriptine treatment with placebo in advanced Parkinson's disease. Neurology, 49, 1060–5CrossRefGoogle ScholarPubMed
Haas, R. H., Nasirian, F., Nakano, K., Ward, D.et al. (1995). Low platelet mitochondrial Complex I and Complex II/III activity in early untreated Parkinson's disease. Ann. Neurol., 37, 714–22CrossRefGoogle ScholarPubMed
Hallett, M. & Litvan, I. (1999). Evaluation of surgery for Parkinson's disease: a report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. The Task Force on Surgery for Parkinson's Disease. Neurology, 53 (9), 1910–21CrossRefGoogle ScholarPubMed
Halliwell, B. (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 18 (9), 685–716CrossRefGoogle ScholarPubMed
Hely, M. A., Morris, J. G. L. & Reid, W. G. J. (1994). The Sydney multicentre study of Parkinson's disease: a randomized, prospective five year study comparing low dose bromocriptine with low dose levodopa-carbidopa. J. Neurol., Neurosurg., Psychiatr., 57, 903–10CrossRefGoogle ScholarPubMed
Hirsch, E.., Hunot, S., Damier, P.et al. (1998). Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration?Ann. Neurol., 44 (3 Suppl 1), S115–20CrossRefGoogle ScholarPubMed
Hornykiewicz, O. (2002). Dopamine miracle: from brain homogenate to dopamine replacement. Movement Disord., 17 (3), 501–8CrossRefGoogle ScholarPubMed
Hutton, J. T., Morris, J. L., Bush, D. F.et al. (1989). Multicenter controlled study of Sinemet CR vs Sinemet (25/100) in advanced Parkinson's disease. Neurology, 39, 67–72Google Scholar
Isacson, O. (2002). Models of repair mechanisms for future treatment modalities of Parkinson's disease. Brain Res. Bull., 57 (6), 839–46CrossRefGoogle ScholarPubMed
Kingsbury, A. E., Mardsen, C. D. & Foster, O. J. (1998). DNA fragmentation in human substantia nigra: apoptosis or perimortem effect?Movement Disord., 13 (6), 877–84CrossRefGoogle ScholarPubMed
Kitada, T., Asakawa, S., Hattori, N.et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–8CrossRefGoogle Scholar
Koller, W. C., Hutton, J. T., Tolosa, E.et al. (1999). Immediate-release and controlled-release carbidopa/levodopa in PD: a 5-year randomized multicenter study. Neurology, 53, 1012–19CrossRefGoogle ScholarPubMed
Kordower, J. H., Palfi, S., Chen, E. Y.et al. (1999). Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol., 46 (3), 419–243.0.CO;2-Q>CrossRefGoogle Scholar
Kordower, J. H., Emborg, M. E., Bloch, J.et al. (2000). Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science, 290 (5492), 767–73CrossRefGoogle Scholar
Kumar, S., Bhatia, M. & Behari, M. (2002). Sleep disorders in Parkinson's disease. Movement Disord., 17 (4), 775–81CrossRefGoogle ScholarPubMed
Laitinen, L. V., Bergenheim, A. T. & Hariz, M. I. (1992). Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J. Neurosurg., 76 (1), 53–61CrossRefGoogle ScholarPubMed
Lang, A. E. (2000). Surgery for Parkinson disease: A critical evaluation of the state of the art. Arch. Neurol., 57 (8), 1118–25CrossRefGoogle ScholarPubMed
Lang, A. E. & Lozano, A. M. (1998). Parkinson's disease. First of two parts. N. Engl. J. Med., 339 (15), 1044–53CrossRefGoogle ScholarPubMed
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–80CrossRefGoogle ScholarPubMed
Langston, J. W., Forno, L. S., Tetrud, J.et al. (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol., 46 (4), 598–6053.0.CO;2-F>CrossRefGoogle ScholarPubMed
Lieberman, A., Ranhosky, A. & Korts, D. (1997). Clinical evaluation of pramipexole in advanced Parkinson's disease: results of a double-blind, placebo controlled, parallel-group study. Neurology, 49, 162–8CrossRefGoogle ScholarPubMed
Limousin, P., Krack, P., Pollak, P.et al. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med., 339 (16), 1105–11CrossRefGoogle ScholarPubMed
Lindvall, O. & Hagell, P. (2001). Cell therapy and transplantation in Parkinson's disease. Clin. Chem. Laborat. Med., 39 (4), 356–61Google ScholarPubMed
Luginger, E., Wenning, G. K., Bosch, S. & Poewe, W. (2000). Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson's disease. Movement Disord., 15, 873–83.0.CO;2-I>CrossRefGoogle ScholarPubMed
Matthews, R. T., Klivenyi, P., Mueller, G.et al. (1999). Novel free radical spin traps protect against malonate and MPTP neurotoxicity. Exp. Neurol., 157 (1), 120–6CrossRefGoogle ScholarPubMed
McGeer, E. G. & McGeer, P. L. (1997). The role of the immune system in neurodegenerative disorders. Movement Disord., 12 (6), 855–8CrossRefGoogle ScholarPubMed
McNaught, K. S., Olanow, C. W., Halliwell, B.et al. (2001). Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat. Rev. Neurosci., 2 (8), 589–94CrossRefGoogle ScholarPubMed
Mizuno, Y., Hattori, N., Mori, H.et al. (2001). Parkin and Parkinson's disease. Curr. Opin. Neurol., 14 (4), 477–82CrossRefGoogle ScholarPubMed
Montastruc, J. L., Rascol, O., Senard, J. M. & Rascol, A. (1994). A randomized controlled study comparing bromocriptine to which levodopa was later added, with levodopa alone in previously untreated patients with Parkinson's disease: a five year follow-up. J. Neurol., Neurosurg. Psychiatr., 57, 1034–8CrossRefGoogle ScholarPubMed
Nijhawan, D., Honarpour, N. & Wang, X. (2000). Apoptosis in neural development and disease. Ann. Rev. Neurosci., 23, 73–87CrossRefGoogle ScholarPubMed
Nutt, J. G., Burchiel, K. J., Comella, C. L.et al. and ICV GDNF Study Group (2003). Implanted intracerebroventricular glial cell line-derived neurotrophic factor. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology, 60, 69–73CrossRefGoogle ScholarPubMed
Oh, M. Y., Abosch, A., Kim, S. H.et al. (2002). Long-term hardware-related complications of deep brain stimulation. Neurosurgery, 50 (6), 1268–74; discussion 1274–6Google ScholarPubMed
Olanow, C. W., Fahn, S., Muenter, M.et al. (1994). A muticenter double-blind placebo-controlled trial of pergolide as an adjunct to Sinemet in Parkinson's disease. Movement Disord., 9, 40–7CrossRefGoogle Scholar
Olanow, C. W., Hauser, R. A., Gauger, L.et al. (1995). The effect of deprenyl and levodopa on the progression of Parkinson's disease. Ann. Neurol., 38, 771–7CrossRefGoogle ScholarPubMed
Olanow, C. W., Goetz, C. G., Kordower, J. H.et al. (2003). A doubleblind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol., 54, 403–14CrossRefGoogle Scholar
Pålhagen, S., Heinonan, E. H., Hagglund, J.et al. (1998). Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology, 51, 520–5CrossRefGoogle ScholarPubMed
Parkinson Disease Research Group in the United Kingdom (1993). Comparisons of therapeutic effects of levodopa, levodopa and selegiline, and bromocriptine in patients with early, mild Parkinson's disease: three-year interim report. Br. Med. J., 307, 469–72CrossRef
Parkinson Study Group. (1993). Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. N. Engl. J. Med., 328, 176–83CrossRef
Parkinson Study Group. (1997a). Safety and efficacy of pramipexole in early Parkinson disease. A randomized dose-ranging study. Parkinson Study Group. J. Am. Med. Assoc., 278 (2), 125–30CrossRef
Parkinson Study Group. (1997b). Entacapone improves motor fluctuations in levodopa-treated Parkinson's disease patients. Ann. Neurol., 42 (5), 747–55CrossRef
Parkinson Study Group. (1999). Low-dose clozapine for the treatment of drug-induced psychoses in Parkinson's disease. N. Engl. J. Med., 340, 757–63CrossRef
Parkinson Study Group. (2000). Pramipexole vs. levodopa as initial treatment for Parkinson's disease: a randomized controlled trial. J. Am. Med. Assoc., 284, 1931–8CrossRef
Polymeropoulos, M. H., Lavedan, C., Leroy, E.et al. (1997). Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science, 276, 2045–7CrossRefGoogle ScholarPubMed
Przedborski, S. & Jackson-Lewis, V. (1998). Mechanisms of MPTP toxicity. Movement Disord., 13 Suppl 1, 35–8Google ScholarPubMed
Rajput, A. H., Martin, W., Saint-Hilaire, M. H.et al. (1997). Tolcapone improves motor function in Parkinsonian patients with the “wearing-off” phenomenon: a double-blind, placebo-controlled, multicenter trial. Neurology, 49, 1066–71CrossRefGoogle ScholarPubMed
Rascol, O., Brooks, D. J., Korczyn, A. D.et al. (2000). A five-year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. N. Engl. J. Med., 342, 1484–91CrossRefGoogle ScholarPubMed
Reed, J. C. (2002). Apoptosis-based therapies. Nat. Rev. Drug Discover., 1 (2), 111–21CrossRefGoogle ScholarPubMed
Rinne, U. K., Larsen, J. P., Siden, A.et al. (1998). Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Neurology, 51, 1309–14CrossRefGoogle ScholarPubMed
Riopelle, R. J. (1987). Bromocriptine and the clinical spectrum of Parkinson's disease. Can. J. Neurol. Sci., 14, 455–9CrossRefGoogle ScholarPubMed
Sanchez-Ramos, J. R., Övervik, E. & Ames, B. N. (1994). A marker of oxyradical-mediated DNA damage (8-hydroxy-2′deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration, 3, 197–204Google Scholar
Schapira, A. H. V., Mann, V. M., Cooper, J. M.et al. (1990). Anatomic disease specificity of NADH CoQ1 reductase complex I deficiency in Parkinson's disease. J. Neurochem., 55, 2142–5CrossRefGoogle ScholarPubMed
Schuurman, P. R., Bosch, D. A., Bossuyt, P. M.et al. (2000). A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N. Engl. J. Med., 342 (7), 461–8CrossRefGoogle ScholarPubMed
Schwab, R. S., England, A. C. Jr., Poskancer, D. C.et al. (1969). Amantadine in the treatment of Parkinson's disease. J. Am. Med. Assoc., 208, 1168–70CrossRefGoogle ScholarPubMed
Shimura, H., Hattori, N., Kubo,, S.et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 25, 302–5CrossRefGoogle Scholar
Shults, C. W. (1998). Neurotrophic factors in neurodegenerative disorder. In Parkinson's Disease and Movement Disorders, ed. J. Jankovic and E. Tolosa, pp. 105–18. 3rd edn. Williams and Wilkins
Shults, C. W., Haas, R. H., Passov, D. & Beal, M. F. (1997). Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann. Neurol., 42, 261–4CrossRefGoogle Scholar
Shults, C. W., Oakes, D., Kieburtz, K.et al. (2002). Effects of coenzyme Q10 in early Parkinson disease-Evidence of slowing of the functional decline. Arch. Neurol., 59, 1541–50CrossRefGoogle ScholarPubMed
Sian, J., Dexter, D. T., Lees, A. J.et al. (1994). Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol., 36 (3), 348–55CrossRefGoogle ScholarPubMed
Snow, B. J., MacDonald, L., Mcauley, D.et al. (2000). The effect of amantadine on levodopa-induced dyskinesias in Parkinson's disease: a double-blind, placebo-controlled study. Clin. Neuropharmacol., 23, 82–5CrossRefGoogle ScholarPubMed
Spillantini, M. G., Schmidt, M. L., Lee, V. M.et al. (1997). Alpha-synuclein in Lewy bodies. Nature, 388 (6645), 839–40CrossRefGoogle ScholarPubMed
Takeda, A., Mallory, M., Sundsmo, M.et al. (1998). Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am. J. Pathol., 152 (2), 367–72Google ScholarPubMed
Tan, E. K., Lum, S. Y., Fook-Chong, S. M.et al. (2002). Evaluation of somnolence in Parkinson's disease: comparison with age- and sex-matched controls. Neurology, 58 (3), 465–8CrossRefGoogle ScholarPubMed
Tarnopolsky, M. A. & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol., 49 (5), 561–74CrossRefGoogle ScholarPubMed
Teismann, P. & Ferger, B. (2001). Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease. Synapse, 39 (2), 167–743.0.CO;2-U>CrossRefGoogle ScholarPubMed
The Deep-Brain Stimulation for Parkinson's Disease Study Group (2001). Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N. Engl. J. Med., 345, 956–63CrossRef
The Parkinson Study Group (1999). Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson's disease. N. Engl. J. Med., 1340, 757–63
Trepanier, L. L., Kumar, R., Lozano, A. M.et al. (2000). Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson's disease. Brain Cogn., 42 (3), 324–47CrossRefGoogle ScholarPubMed
Verhagen Metman, L. V., Del Dotto, P., LePoole, K.et al. (1999). Amantadine for levodopa-induced dyskinesias. A 1-year follow-up study. Arch. Neurol., 56, 1383–6CrossRefGoogle Scholar
Wakabayashi, K., Matsumoto, K., Takayama, K.et al. (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson's disease. Neurosci. Lett., 239 (1), 45–8CrossRefGoogle ScholarPubMed
Wermuth, L. and the Danish Pramipexole Study Group (1998). A double-blind, placebo-controlled, randomized, multi-center study of pramipexole in advanced Parkinson's disease. Eur. J. Neurol., 5, 235–44CrossRefGoogle ScholarPubMed
Wolters, E. C., Tesselaar, H. J. M. and the International (NL and UK) Sinemet CR Study Group (1996). International (NL–UK) double-blind study of Sinemet CR and standard Sinemet (25/100) in 170 patients with fluctuating Parkinson's disease. J. Neurol., 243, 235–40CrossRefGoogle ScholarPubMed
Wu, D. C., Jackson-Lewis, V., Vila, M.et al. (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 22 (5), 1763–71CrossRefGoogle ScholarPubMed
Zhang, C., Steiner, J. P., Hamilton, G. S.et al. (2001). Regeneration of dopaminergic function in 6-hydroxydopamine-lesioned rats by neuroimmunophilin ligand treatment. J. Neurosci., 21 (15), RC156CrossRefGoogle ScholarPubMed
Zimmermann, K. C., Bonzon, C. & Green, D. R. (2001). The machinery of programmed cell death. Pharmacol. Therap., 92 (1), 57–70CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×