Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T14:44:05.341Z Has data issue: false hasContentIssue false

20 - Disorders of episodic memory

Published online by Cambridge University Press:  10 October 2009

Chun Lim
Affiliation:
Beth Israel Deaconess Medical Center, Boston, MA
Michael P Alexander
Affiliation:
Beth Israel Deaconess Medical Center, Boston, MA
Olivier Godefroy
Affiliation:
Université de Picardie Jules Verne, Amiens
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. P. and Freedman, M. (1984). Amnesia after anterior communicating artery aneurysm rupture. Neurology, 34, 752–7.CrossRefGoogle ScholarPubMed
Alexander, M. P. and Stuss, D. T. (2000). Disorders of frontal lobe functioning. Sem. Neurol., 20, 427–37.CrossRefGoogle ScholarPubMed
Alexander, M. P., Stuss, D. T., et al. (2003). California Verbal Learning Test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 1493–503.CrossRefGoogle ScholarPubMed
Baddeley, A. and Wilson, B. A. (1994). When implicit learning fails: Amnesia and the problem of error elimination. Neuropsychologia, 32, 53–68.CrossRefGoogle ScholarPubMed
Brain, W. R. (1941). Visual disorientation with special reference to lesions of the right cerebral hemisphere. Brain, 64, 244–72.CrossRefGoogle Scholar
Brown, J. A., Lutsep, H., et al. (2003). Motor cortex stimulation for enhancement of recovery after stroke: A case report. Neurol. Res., 25, 815–18.CrossRefGoogle Scholar
Caplan, L. R. (1980). “Top of the basilar” syndrome. Neurology, 30, 72–9.CrossRefGoogle ScholarPubMed
Caplan, L. R. and Hedley-Whyte, T. (1974). Cuing and memory dysfunction in alexia without agraphia. Brain, 97, 251–62.CrossRefGoogle ScholarPubMed
Carmichael, S. T. (2003). Plasticity of cortical projections after stroke. Neuroscientist, 9, 64–75.CrossRefGoogle ScholarPubMed
Cermak, L. S. and O'Connor, M. (1983). The anterograde and retrograde retrieval ability of a patient with amnesia due to encephalitis. Neuropsychologia, 21, 213–34.CrossRefGoogle ScholarPubMed
Chayer, C. and Freedman, M. (2001). Frontal lobe functions. Curr. Neurol. Neurosci. Rep., 1, 547–52.CrossRefGoogle ScholarPubMed
Corsellis, J. A., Goldberg, G. J., et al. (1968). “Limbic encephalitis” and its association with carcinoma. Brain, 91, 481–96.CrossRefGoogle ScholarPubMed
Cremonini, W., Renzi, E., et al. (1980). Contrasting performance of right- and left-hemisphere patients on short-term and long-term sequential visual memory. Neuropsychologia, 18, 9.CrossRefGoogle ScholarPubMed
Cummings, J. L., Tomiyasu, U., et al. (1984). Amnesia with hippocampus lesions after cardiopulmonary arrest. Neurology, 34, 679–81.CrossRefGoogle ScholarPubMed
D'Esposito, M., Alexander, M. P., et al. (1996). Recovery of memory and executive function following anterior communicating artery aneurysm rupture. J. Int. Neuropsychol. Soc., 2, 565–70.CrossRefGoogle ScholarPubMed
Damasio, A. R. and Damasio, H. (1983). The anatomic basis of pure alexia. Neurology, 33, 1573–83.CrossRefGoogle ScholarPubMed
Damasio, A. R., Eslinger, P. J., et al. (1985a). Multimodal amnesic syndrome following bilateral temporal and basal forebrain damage. Arch. Neurol., 42, 252–9.CrossRefGoogle Scholar
Damasio, A. R., Graff-Radford, N. R., et al. (1985b). Amnesia following basal forebrain lesions. Arch. Neurol., 42, 263–71.CrossRefGoogle Scholar
Deluca, J. and Cincerone, K. D. (1991). Confabulation following aneurysm of the anterior communicating artery. Cortex, 27, 417–23.CrossRefGoogle ScholarPubMed
De Olmos, J. S. (1990). Amygdala. In The Human Nervous System, ed. Paxinos, J.. New York: Academic Press, Inc., pp. 583–710.Google Scholar
Renzi, E., Faglioni, P., et al. (1977a). Spatial memory and hemispheric locus of lesion. Cortex, 13, 424–33.CrossRefGoogle Scholar
Renzi, E., Faglioni, P., et al. (1977b). Topographical amnesia. J. Neurol., Neurosurg. Psychiatry, 40, 498–505.CrossRefGoogle Scholar
Renzi, E., Zambolin, A., et al. (1987). The pattern of neuropsychological impairment associated with left posterior cerebral artery infarcts. Brain, 110, 1099–116.CrossRefGoogle ScholarPubMed
Evans, J. J., Wilson, B. A., et al. (2003). Who makes good use of memory aids? Results of a survey of people with acquired brain injury. J. Int. Neuropsychol. Soc., 9, 925–35.CrossRefGoogle ScholarPubMed
Fisher, C. M. (1992). Concerning the mechanism of recovery in stroke hemiplegia. Can. J. Neurol. Sci., 19, 57–63.Google ScholarPubMed
Fletcher, P. C. and Henson, R. N. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124, 849–81.CrossRefGoogle ScholarPubMed
Gade, A. and Mortensen, E. L. (1990). Temporal gradient in the remote memory impairment of amnesic patients with lesions in the basal forebrain. Neuropsychologia, 28, 985–1001.CrossRefGoogle ScholarPubMed
Gaffan, D. (2002). Against memory systems. Philos. Trans. R. Soc. London. [Bio.], 357, 1111–21.CrossRefGoogle ScholarPubMed
Gentilini, M., Renzi, E., et al. (1987). Bilateral paramedian thalamic artery infarcts: Report of eight cases. J. Neuro., Neurosurg. Psychiatry, 50, 900–9.CrossRefGoogle ScholarPubMed
Geschwind, N. and Fusillo, M. (1966). Color-naming defects in association with alexia. Arch. Neurol., 15, 137–46.CrossRefGoogle ScholarPubMed
Ghika-Schmid, F. and Bogousslavsky, J. (2000). The acute behavioral syndrome of anterior thalamic infarction: A prospective study of 12 cases. Ann. Neurol., 48, 220–7.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Glisky, E. L., Schacter, D. L., et al. (1986). Learning and retention of computer-related vocabulary in memory-impaired patients: Method of vanishing cues. J. Clin. Exp. Neuropsychol., 8, 292–312.CrossRefGoogle ScholarPubMed
Godfrey, H. P. and Knight, R. G. (1985). Cognitive rehabilitation of memory functioning in amnesiac alcoholics. J. Consult. Clin. Psychol., 53, 555–7.CrossRefGoogle ScholarPubMed
Goldstein, L. B. (1997). Influence of common drugs and related factors on stroke outcome. Curr. Opin. Neurol., 10, 52–7.CrossRefGoogle ScholarPubMed
Graff-Radford, N. R., Damasio, H., et al. (1985). Nonhaemorrhagic thalamic infarction. Brain, 108, 485–516.CrossRefGoogle ScholarPubMed
Harris, J. E. and Sunderland, A. (1981). A brief survey of the management of memory disorders in rehabilitation units in Britain. Int. Rehab. Med., 3, 206–9.Google ScholarPubMed
Heilman, K. M., Schwartz, H. D., et al. (1975). Defective motor learning in ideomotor apraxia. Neurology, 25, 1018–20.CrossRefGoogle ScholarPubMed
Hillary, F. G., Schulthesis, M. T., et al. (2003). Spacing of repetitions improves learning and memory after moderate and servere TB1. J. Clin. Exp. Neuropsychol., 25, 49–58.CrossRefGoogle Scholar
Hyman, B. T., Hoesen, G. W., et al. (1984). Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science, 225, 1168–70.CrossRefGoogle ScholarPubMed
Irle, E., Wowra, B., et al. (1992). Memory disturbances following anterior communicating artery rupture. Ann. Neurol., 31, 473–80.CrossRefGoogle ScholarPubMed
Johnson, M. K., Hashtroudi, S., et al. (1993). Source monitoring. Psychol. Bull., 114, 3–28.CrossRefGoogle ScholarPubMed
Jones, M. K. (1974). Imagery as a mnemonic aid after left temporal lobectomy: Contrast between material-specific and generalized memory disorders. Neuropsychologia, 12, 21–30.CrossRefGoogle ScholarPubMed
Katz, D. I., Alexander, M. P., et al. (1987). Dementia following strokes in the mesencephalon and diencephalon. Arch. Neurol., 44, 1127–33.CrossRefGoogle ScholarPubMed
Kawamata, T., Ren, J., et al. (1998). Intracisternal osteogenic protein-1 enhances functional recovery following focal stroke. Neuroreport, 9, 1441–5.CrossRefGoogle ScholarPubMed
Komatsu, S., Mimura, M., et al. (2000). Errorless and effortful processes involved in learning of face-name associations by patients with alcoholic Korsakoff's syndrome. Neuropsychol. Rehab., 10, 113–32.CrossRefGoogle Scholar
Kozlowski, D. A. and Schallert, T. (1998). Relationship between dendritic pruning and behavioral recovery following sensorimotor cortex lesions. Behav. Brain Res., 97, 89–98.CrossRefGoogle ScholarPubMed
Liepert, J., Bauder, H., et al. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 1210–6.CrossRefGoogle ScholarPubMed
Liepmann, H. and Mass, O. (1907). Ein Fall von linksseitiger Agraphie und Apraxie bei rechtsseitiger Lahmung. J. Psychol. Neurol., 10, 214–27.Google Scholar
Lindqvist, G. and Norlen, G. (1966). Korsakoff's syndrome after operation on ruptured aneurysm of the anterior communicating artery. Acta Psychiatr. Scand., 42, 24–34.CrossRefGoogle ScholarPubMed
Lipton, S. A. (1989). Growth factors for neuronal survival and process regeneration. Implications in the mammalian central nervous system. Arch. Neurol., 46, 1241–8.CrossRefGoogle ScholarPubMed
Luft, A. R., McCombe-Waller, S., et al. (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: A randomized controlled trial. JAMA, 292, 1853–61.CrossRefGoogle ScholarPubMed
Madureira, S., Guerreiro, M., et al. (1999). A follow-up study of cognitive impairment due to inferior capsular genu infarction. J. Neurol., 246, 764–9.CrossRefGoogle ScholarPubMed
Magavi, S. S., Leavitt, B. R., et al. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951–5.CrossRefGoogle ScholarPubMed
Mair, W. G. P., Warrington, E. K., et al. (1979). Memory disorder in Korsakoff's psychosis: A neuropathological and neuropsychological investigation of two cases. Brain, 102, 749–83.CrossRefGoogle ScholarPubMed
Martinsson, L. and Eksborg, S. (2004). Drugs for stroke recovery: The example of amphetamines. Drugs and Aging, 21, 67–79.CrossRefGoogle ScholarPubMed
Milner, B., Petrides, M., et al. (1985). Frontal lobes and the temporal organization of memory. Hum. Neurobiol., 4, 137–42.Google Scholar
Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not separate removal of the amygdala and hippocampus. Nature, 273, 297–8.CrossRefGoogle Scholar
Mohr, J. P., Leicester, J., et al. (1971). Right hemianopia with memory and color deficits in circumscribed left posterior cerebral artery territory infarction. Neurology, 21, 1104–13.CrossRefGoogle ScholarPubMed
Moscovitch, M. and Winocur, G. (1995). Frontal lobes, memory, and aging. Ann. N. Y. Acad. Sci., 769, 119–50.CrossRefGoogle ScholarPubMed
Naeser, M. A., Martin, P. I., et al. (2005). Improved picture naming in chronic aphasia after TMS to part of right Broca's area: An open-protocol study. Brain Lang., 93, 95–105.CrossRefGoogle ScholarPubMed
Nauta, W. J. (1961). Fibre degeneration following lesions of the amygdaloid complex in the monkey. J. Anat., 95, 515–31.Google ScholarPubMed
Oliveri, M., Bisiach, E., et al. (2001). rTMS of the unaffected hemisphere transiently reduces contralesional visuospatial hemineglect. Neurology, 57, 1338–40.CrossRefGoogle ScholarPubMed
Papez, J. W. (1995). A proposed mechanism of emotion. 1937. J. Neuropsychiatry Clin. Neurosci., 7, 103–12.Google ScholarPubMed
Park, C. K., Nehls, D. G., et al. (1988). The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol., 24, 543–51.CrossRefGoogle ScholarPubMed
Prigatano, G. P., Fordyce, D. J., et al. (1984). Neuropsychological rehabilitation after closed head injury in young adults. J. Neurol., Neurosurg. Psychiatry, 47, 505–13.CrossRefGoogle ScholarPubMed
Risse, G. L., Rubens, A. B., et al. (1984). Disturbances of long-term memory in aphasic patients. Brain, 107, 605–17.CrossRefGoogle ScholarPubMed
Rosene, D. L. and Van Hoesen, G. W. (1987). The hippocampal formation of the primate brain: A review of some comparative aspects of cytoarchitecture and connections. In Cerebral Cortex, ed. Jones, E. G. and Peters, A.. Plenum Publishing Corporation, pp. 345–456.CrossRefGoogle Scholar
Ross, E. D. (1980a). Sensory-specific and fractional disorders of recent memory in man. I. Isolated loss of visual recent memory. Arch. Neurol., 37, 193–200.CrossRefGoogle Scholar
Ross, E. D. (1980b). Sensory-specific and fractional disorders of recent memory in man. II. Unilateral loss of tactile recent memory. Arch. Neurol., 37, 267–72.CrossRefGoogle Scholar
Rothi, L. J. and Heilman, K. M. (1984). Acquisition and retention of gestures by apraxic patients. Brain Cogn., 3, 426–37.CrossRefGoogle ScholarPubMed
Schnyer, D. M., Verfaellie, M., et al. (2004). A role for right medial prefontal cortex in accurate feeling-of-knowing judgements: Evidence from patients with lesions to frontal cortex. Neuropsychologia, 42, 957–66.CrossRefGoogle ScholarPubMed
Scoville, W. B. and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol., Neurosurg. Psychiatry, 20, 11–21.CrossRefGoogle ScholarPubMed
Seitz, R. J., Azari, N. P., et al. (1999). The role of diaschisis in stroke recovery. Stroke, 30, 1844–50.CrossRefGoogle ScholarPubMed
Squire, L. R., Amaral, D. G., et al. (1989). Description of brain injury in the amnesic patient N.A. based on magnetic resonance imaging. Exp. Neurol., 105, 23–35.CrossRefGoogle ScholarPubMed
Stablum, F., Umilta, C., et al. (2000). Rehabilitation of executive deficits in closed head injury and anterior communicating artery aneurysm patients. Psychol. Res., 63, 265–78.CrossRefGoogle ScholarPubMed
Stuss, D. T., Alexander, M. P., et al. (1978). An extraordinary form of confabulation. Neurology, 28, 1166–72.CrossRefGoogle ScholarPubMed
Stuss, D. T., Alexander, M. P., et al. (1994). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 8, 355–73.CrossRefGoogle Scholar
Swanson, L. W. (1978). The anatomical organization of septo-hippocampal projections. In Functions of the Septo-Hippocampal System. Ciba Foundation Symposium, pp. 25–43.Google Scholar
Swanson, L. W. and Cowan, W. M. (1975). Hippocampo-hypothalamic connections: Origin in subicular cortex, not Ammon's horn. Science, 189, 303–4.CrossRefGoogle Scholar
Swanson, L. W. and Cowan, W. M. (1977). An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol., 172, 49–84.CrossRefGoogle ScholarPubMed
Takaku, A., Tanaka, S., et al. (1979). Postoperative complications in 1,000 cases of intracranial aneurysms. Surg. Neurol., 12, 137–44.Google ScholarPubMed
Tatemichi, T. K., Desmond, D. W., et al. (1992). Confusion and memory loss from capsular genu infarction: a thalamocortical disconnection syndrome?Neurology, 42, 1966–79.CrossRefGoogle ScholarPubMed
Verfaellie, M., Rapcsak, S. Z., et al. (2004). Elevated false recognition in patients with frontal lobe damage is neither a general nor a unitary phenomenon. Neuropsychology, 18, 94–103.CrossRefGoogle ScholarPubMed
Victor, M., Adams, R. D., et al. (1971). The Wernicke-Korsakoff Syndrome. Oxford, England, Blackwells.Google ScholarPubMed
Victor, M., Angevine, J. B., et al. (1961). Memory loss with lesions of hippocampal formation. Arch. Neurol., 5, 244–63.CrossRefGoogle ScholarPubMed
Cramon, D. Y., Hebel, N., et al. (1985). A contribution to the anatomical basis of thalamic amnesia. Brain, 108, 993–1008.CrossRefGoogle Scholar
Cramon, D. Y., Hebel, N., et al. (1988). Verbal memory and learning in unilateral posterior cerebral infarction. Brain, 111, 1061–77.CrossRefGoogle Scholar
Ween, J. E., Verfaellie, M., et al. (1996). Verbal memory function in mild aphasia. Neurology, 47, 795–801.CrossRefGoogle ScholarPubMed
Werhahn, K. J., Conforto, A. B., et al. (2003). Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann. Neurol., 54, 464–72.CrossRefGoogle ScholarPubMed
Whitehouse, P. J., Price, D. L., et al. (1982). Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–9.CrossRefGoogle ScholarPubMed
Wilson, B. (1982). Success and failure in memory training following a cerebral vascular accident. Cortex, 18, 581–94.CrossRefGoogle ScholarPubMed
Wilson, B. A., Evans, J. J., et al. (1997). Evaluation of NeuroPage: A new memory aid. J. Neurol. Neurosurg. Psychiatry, 63, 113–15.CrossRefGoogle ScholarPubMed
Zola-Morgan, S., Squire, L. R., et al. (1982). The neuroanatomy of amnesia: Amygdala-hippocampus versus temporal stem. Science, 218, 1337–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×