Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T02:01:02.848Z Has data issue: false hasContentIssue false

32 - Peroxisomal disorders

Published online by Cambridge University Press:  31 July 2009

Jeffrey Kane
Affiliation:
Specialty for Children, Austin, Texas, USA
E. Steve Roach
Affiliation:
Wake Forest University School of Medicine, Winston-Salem, NC, USA
E. Steve Roach
Affiliation:
Wake Forest University, North Carolina
Van S. Miller
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

Peroxisomes are small granular organelles surrounded by a single membrane. Johannes A. G. Rhodin first described these structures in the mouse kidney in his 1954 PhD thesis (Moser, 1988). The proteins which form the peroxisome are derived from nuclear genes and synthesized in their final configuration by free polyribosomes. The peroxisomal enzymes are marked for transfer to the peroxisome by specific sequences of amino acids that are attached to the proteins during translation. These are named the peroxismal targeting sequences (PTS), and so far two such sequences (termed PTS-1 and PTS-2) have been identified. For each sequence there is a specific receptor on the peroxisomal membrane that binds to a targeting sequence and facilitates the transport of the protein across the peroxisomal membrane.

Peroxisomal disorders may result from impaired peroxisome assembly or defective protein importation. Peroxisome biogenesis disorders are characterized by abnormal or absent peroxisomal structure and by the loss of multiple peroxisomal functions. Examples include Zellweger syndrome and neonatal adrenoleukodystrophy (Baumgartner et al., 1998). Peroxisomal disorders such as X-linked adrenoleukodystrophy, Refsum disease, and Sjögren–Larsson syndrome result from a mutation affecting a single peroxisomal protein with loss of a single peroxisome function. Rhizomelic chondrodysplasia punctata (RCDP) can fit into either category; it usually results from a peroxisome biogenesis disorder but sometimes stems from one of two single enzyme defects. At least 20 disorders are now attributed to peroxisome abnormalities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agamanolis, D. P. & Novak, R. W. (1995). Rhizomelic chondrodysplasia punctata: report of a case with review of the literature and correlation with other peroxisomal disorders. Pediatric Pathology and Laboratory Medicine, 15:503–513CrossRefGoogle ScholarPubMed
Allen, I. V., Swallow, M., Nevin, N. C. & McCormick, D. (1978). Clinicopathological study of Refsum's disease with particular reference to fatal complications. Journal of Neurology, Neurosurgery and Psychiatry, 41:323–332CrossRefGoogle ScholarPubMed
Altinok, D., Yildiz, Y. T., Seckin, D., Altinok, G., Tacal, T. & Eryilmaz, M. (1999). MRI of three siblings with Sjögren–Larsson syndrome. Pediatric Radiology, 29:766–769Google ScholarPubMed
Baumgartner, M. R., Poll-The, B. T., Verhoeven, N. M. et al. (1998). Clinical approach to inherited peroxisomal disorders: a series of 27 patients. Annals of Neurology, 44:720–730CrossRefGoogle ScholarPubMed
Braverman, N., Steel, G., Obie, C. et al. (1997). Human Pex7 encodes the Peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nature Genetics, 15:370–375CrossRefGoogle ScholarPubMed
Brites, P., Motley, A., Hogenhout, E. et al. (1998). Molecular basis of rhizomelic chondrodysplasia punctata type I: high frequency of the Leu-292 Stop mutation in 38 patients. Journal of Inherited Metabolic Diseases, 21:306–308CrossRefGoogle ScholarPubMed
Britton, T. C., Gibberd, F. B., Clemens, M. E., Billimoria, J. D. & Sidey, M. C. (1989). The significance of plasma phytanic acid levels in adults. Journal of Neurology, Neurosurgery and Psychiatry, 52:891–894CrossRefGoogle ScholarPubMed
Chang, C. & Yoshida, A. (1997). Human fatty aldehyde dehydrogenase gene (ALDH10): organization and tissue-dependent expression. Genomics, 40:80–85CrossRefGoogle ScholarPubMed
Cubo, E. & Goetz, C. G. (2000). Dystonia secondary to Sjögren–Larsson syndrome. Neurology, 55:1236–1237CrossRefGoogle ScholarPubMed
De, L. V., Rogers, G. R., Hamrock, D. J. et al. (1996). Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nature Genetics, 12:52–57Google Scholar
De, L. V., Rogers, G. R., Tarcsa, E. et al. (1997). Sjögren–Larsson syndrome is caused by a common mutation in northern European and Swedish patients. Journal of Investigative Dermatology, 109:79–83Google Scholar
Dickson, N., Mortimer, J. G., Faed, J. M., Pollard, A. C., Styles, M. & Peart, D. A. (1989). A child with Refsum's disease: successful treatment with diet and plasma exchange. Developmental Medicine and Child Neurology, 31:92–97CrossRefGoogle ScholarPubMed
Di Rocco, M., Filocamo, M., Tortori-Donati, P., Veneselli, E., Borrone, C. & Rizzo, W. B. (1994). Sjögren–Larsson syndrome: nuclear magnetic resonance imaging of the brain in a 4-year-old boy. Journal of Inherited Metabolic Disorders, 17:112–114CrossRefGoogle Scholar
Fardeau, M. & Engel, W. K. (1969). Ultrastructural study of a peripheral nerve biopsy in Refsum's disease. Journal of Neuropathology and Experimental Neurology, 28:278–294CrossRefGoogle ScholarPubMed
Fourie, D. T. (1995). Chondrodysplasia punctata: case report and literature review of patients with heart lesions. Pediatric Cardiology, 16:247–250CrossRefGoogle ScholarPubMed
Fryer, D. G., Winckleman, A. C., Ways, P. O. & Swanson, A. G. (1971). Refsum's disease. A clinical and pathological report. Neurology, 21:162–167CrossRefGoogle ScholarPubMed
Gelot, A., Vallat, J. M., Tabaraud, F. & Rocchiccioli, F. (1995). Axonal neuropathy and late detection of Refsum's disease. Muscle and Nerve, 18:667–670CrossRefGoogle ScholarPubMed
Gendall, P. W., Baird, C. E. & Becroft, M. O. (1994). Rhizomelic chondrodysplasia punctata: early recognition with antenatal ultrasonography. Journal of Clinical Ultrasound, 22:271–274CrossRefGoogle ScholarPubMed
Ghadially, R. & Chong, L. P. (1992). Ichthyoses and hyperkeratotic disorders. Dermatologic Clinics, 10:597–605Google ScholarPubMed
Gibberd, F. B., Billimoria, J. D., Goldman, J. M. et al. (1985). Heredopathia atactica polyneuritiformis: Refsum's disease. Acta Neurologica Scandinavica, 72:1–17CrossRefGoogle ScholarPubMed
Goldsmith, L. A., Baden, H. P. & Canty, T. G. (1971). Sjögren–Larsson syndrome. Diversity of cutaneous manifestations. Acta Dermato-Venereologica, 51:374–378Google ScholarPubMed
Gomori, J. M., Leibovici, V., Zlotogorski, A., Wirguin, I. & Haham-Zadeh, S. (1987). Computed tomography in Sjögren–Larsson syndrome. Neuroradiology, 29:557–559CrossRefGoogle ScholarPubMed
Happle, R. (1981). Cataracts as a marker of genetic heterogeneity in chondrodysplasia punctata. Clinical Genetics, 19:64–66CrossRefGoogle ScholarPubMed
Harari, D., Gibberd, F. B., Dick, J. P. & Sidey, M. C. (1991). Plasma exchange in the treatment of Refsum's disease (heredopathia atactica polyneuritiformis). Journal of Neurology, Neurosurgery and Psychiatry, 54:614–617CrossRefGoogle Scholar
Herbert, M. A. & Clayton, P. T. (1994). Phytanic acid alpha-oxidase deficiency (Refsum disease) presenting in infancy. Journal of Inherited Metabolic Disorders, 17:211–214CrossRefGoogle ScholarPubMed
Hertzenberg, B. S., Kliewer, M. A., Decker, M., Miller, C. R. & Bowie, J. D. (1999). Antenatal ultrasonographic diagnosis of rhizomelic chondrodysplasia punctata. Journal of Ultrasound Medicine, 18:715–718CrossRefGoogle Scholar
Hussain, M. Z., Aihara, M., Oba, H. et al. (1995). MRI of white matter changes in the Sjögren–Larsson syndrome. Neuroradiology, 37:576–577CrossRefGoogle ScholarPubMed
Ijlst, L., Oostheim, W., Werkhoven, M., Willemsen, M. A. A. P. & Wanders, R. J. (1999). Molecular basis of Sjögren–Larsson syndrome: frequency of the 1297–1298 del GA and 943C→T mutation in 29 patients. Journal of Inherited Metabolic Disorders, 22: 319–321CrossRefGoogle Scholar
Jansen, G. A., Ofman, R., Ferdinandusse, S. et al. (1997). Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nature Genetics, 17:190–193CrossRefGoogle ScholarPubMed
Jansen, G. A., Hogenhout, E. M., Ferdinandusse, S. et al. (2000). Human phytanoyl-CoA hydroxylase: resolution of the gene structure and the molecular basis of Refsum's disease. Human Molecular Genetics, 9:1195–1200CrossRefGoogle ScholarPubMed
Kelly, T. E., Bennett, A., Afford, B. A. & Greer, K. M. (1999). Chondrodysplasia punctata stemming from maternal lupus erythematosus. American Journal of Medical Genetics, 83:397–4013.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Kelson, T. L., Craft, D. A. & Rizzo, W. B. (1992). Carrier detection for Sjögren–Larsson syndrome. Journal of Inherited Metabolic Disorders, 15:105–111CrossRefGoogle ScholarPubMed
Kuntzer, T., Ochsner, F., Schmid, F. & Regli, F. (1993). Quantitative EMG analysis and longitudinal nerve conduction studies in a Refsum's disease patient. Muscle and Nerve, 16:857–863CrossRefGoogle Scholar
Lacour, M., Middleton-Price, H. R. & Harper, J. I. (1996). Confirmation of linkage of Sjögren–Larsson syndrome to chromosome 17 in families of different ethnic origins. Journal of Medical Genetics, 33:258–259CrossRefGoogle ScholarPubMed
Lou, J. S., Snyder, R. & Griggs, R. C. (1997). Refsum's disease: long term treatment preserves sensory nerve action potentials and motor function. Journal of Neurology, Neurosurgery and Psychiatry, 62:671–672CrossRefGoogle ScholarPubMed
Maaswinkel-Mooij, P. D., Brouwer, O. F. & Rizzo, W. B. (1994). Unsuccessful dietary treatment of Sjögren–Larsson syndrome. Journal of Pediatrics, 124:748–750CrossRefGoogle ScholarPubMed
McLennan, J. E., Gilles, F. H. & Robb, R. M. (1974). Neuropathological correlation in Sjögren–Larsson syndrome. Oligophrenia, ichthyosis and spasticity. Brain, 97:693–708CrossRefGoogle ScholarPubMed
Mihalik, S. J., Morrell, J. C., Kim, D., Sacksteder, K. A., Watkins, P. A. & Gould, S. J. (1997). Identification of PAHX, a Refsum disease gene. Nature Genetics, 17:185–189CrossRefGoogle ScholarPubMed
Miyanomae, Y., Ochi, M., Yoshioka, H. et al. (1995). Cerebral MRI and spectroscopy in Sjögren–Larsson syndrome: case report. Neuroradiology, 37:225–228CrossRefGoogle ScholarPubMed
Moser, H. W. (1988). The peroxisome: nervous system role of a previously underrated organelle. The 1987 Robert Wartenberg Lecture. Neurology, 38:1617–1627CrossRefGoogle ScholarPubMed
Motley, A. M., Tabak, H. F., Smeitink, J. A. M., Poll-The, B. T., Barth, P. G. & Wanders, R. J. A. (1996). Non-rhizomelic and rhizomelic chondrodysplasia punctata within a single complementation group. Biochimica et Biophysica Acta, 1315:153–158CrossRefGoogle ScholarPubMed
Motley, A. M., Hettema, E. H., Hogenhout, E. M. et al. (1997). Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nature Genetics, 15:377–380CrossRefGoogle ScholarPubMed
Mukherji, M., Chien, W., Kershaw, N. J. et al. (2001). Structure–function analysis of phytanoyl-CoA 2-hydroxylase mutations causing Refsum's disease. Human Molecular Genetics, 10:1971–1982CrossRefGoogle ScholarPubMed
Nevin, N. C., Cumings, J. N. & McKeown, F. (1967). Refsum's syndrome. Heredopathia atactica polyneuritiformis. Brain, 90:419–428CrossRefGoogle ScholarPubMed
Nuoffer, J. M., Pfammatter, J. P., Spahr, A. et al. (1994). Chondrodysplasia punctata with a mild clinical course. Journal of Inherited Metabolic Diseases, 17:60–66CrossRefGoogle ScholarPubMed
O'Brien, T. (1990). Chondrodysplasia punctata (Conradi disease). International Journal of Dermatology, 29:472–476CrossRefGoogle Scholar
Paller, A. (1994). Laboratory tests for ichthyosis. Dermatologic Clinics, 12:99–107Google ScholarPubMed
Pauli, R. M., Suttie, J. W., Mosher, D. R. & Lian, J. B. (1985). Simultaneous occurrence of congenital deficiency of multiple vitamin K dependent coagulation factors and phenotypic features identical to the warfarin embryopathy. (Abstract)American Journal of Human Genetics, 37:A71Google Scholar
Pauli, R. M., Lian, J. B., Mosher, D. F. & Suttie, J. W. (1987). Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. American Journal of Human Genetics, 41:566–583Google ScholarPubMed
Pigg, M., Annton-Lamprecht, I., Braun-Quentin, C., Gustavson, K. H. & Wadelius, C. (1999). Further evidence of genetic homogeneity in Sjögren–Larsson syndrome. Acta Dermato-Venereologica, 79:41–43Google ScholarPubMed
Purdue, P. E., Zhang, J. W., Skoneczny, M. & Lazarow, P. B. (1997). Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nature Genetics, 15:381–384CrossRefGoogle ScholarPubMed
Purdue, P. E., Skoneczny, M., Yang, X., Zhang, J. W. & Lazarow, P. B. (1998). Rhizomelic chondrodysplasia punctata, a peroxisomal biogenesis disorder caused by a defect in Pex7p, a human peroxisomal protein import receptor: a minireview. Neurochemical Research, 24:581–586CrossRefGoogle Scholar
Rizzo, W. B. (1993). Sjögren–Larsson syndrome. Seminars in Dermatology, 12:210–218Google ScholarPubMed
Rizzo, W. B. (1999). Sjögren–Larsson syndrome. Explaining the skin–brain connection. Neurology, 52:1307–1308CrossRefGoogle ScholarPubMed
Rizzo, W. B. (2001). Sjögren–Larsson syndrome: fatty aldehyde dehydrogenase deficiency. In The Metabolic and Molecular Bases of Inherited Disease, 8th edn, ed. C. R. Scrivner, A. L. Beaudet & D. Valle, vol. II, Chapter 98, pp. 2239–58. New York: McGraw-Hill
Rizzo, W. B., Dammann, A. L. & Craft, D. A. (1988). Sjögren–Larsson syndrome. Impaired fatty alcohol oxidation in cultured fibroblasts due to deficient fatty alcohol: nicotinamide adenine dinucleotide oxidoreductase activity. Journal of Clinical Investigation, 81:738–744CrossRefGoogle ScholarPubMed
Rizzo, W. B., Craft, D. A., Kelson, T. L. et al. (1994). Prenatal diagnosis of Sjögren–Larsson syndrome using enzymatic methods. Prenatal Diagnosis, 14:577–581CrossRefGoogle ScholarPubMed
Rizzo, W. B., Carney, G. & Lin, Z. (1999). The molecular basis of Sjögren–Larsson syndrome: mutation analysis of the fatty aldehyde dehydrogenase gene. American Journal of Human Genetics, 65:1547–1560CrossRefGoogle ScholarPubMed
Rogers, G. R., Rizzo, W. B., Zlotogorski, A. et al. (1995). Genetic homogeneity in Sjögren–Larsson syndrome: linkage to chromosome 17p in families of different non-Swedish ethnic origins. American Journal of Human Genetics, 57:1123–1129Google ScholarPubMed
Seguin, J. H., Baugh, R. F. & Mc Intee, R. A. (1993). Airway manifestations of chondrodysplasia punctata. International Journal of Pediatric Otorhinolaryngology, 27: 85–90CrossRefGoogle ScholarPubMed
Shaul, W. L., Emery, H. & Hall, J. G. (1975). Chondrodysplasia punctata and maternal warfarin use during pregancy. American Journal of Diseases of Children, 129:360–362Google Scholar
Sheffield, L. J., Halliday, J. L., Danks, D. M., Rogers, J. G., Poulos, A. & Morrison, N. (1989). Clinical, radiological and biochemical classification of chondrodysplasia punctata. (Abstract). American Journal of Human Genetics, 45(Suppl): A64Google Scholar
Sillen, A., Jagell, S. & Wadelius, C. (1997a). A missense mutation in the FALDH gene identified in Sjögren–Larsson syndrome patients originating from the northern part of Sweden. Human Genetics, 100: 201–203CrossRefGoogle Scholar
Sillen, A., Holmgren, G. & Wadelius, C. (1997b). First prenatal diagnosis by mutation analysis in a family with Sjögren–Larsson syndrome. Prenatal Diagnosis, 17: 1147–11493.0.CO;2-D>CrossRefGoogle Scholar
Silva, C. A., Saraiva, A., Goncalves, V., Sousa, G., Martins, R. & Cruz, C. (1980). Pathological findings in one of two siblings with Sjögren–Larsson Syndrome. European Neurology, 19:166–170CrossRefGoogle ScholarPubMed
Sjögren, T. & Larsson, T. (1957). Oligophrenia in combination with congenital ichthyosis and spastic disorders. Acta Psychiatrica Neurologica Scandinavica, 32(Suppl. 113): 1–113Google Scholar
Spranger, J. W., Opitz, J. M. & Bidder, U. (1971). Heterogeneity of chondrodysplasia punctata. Human Genetik, 11:190–212CrossRefGoogle ScholarPubMed
Taube, B., Billeaud, C., Labreze, C., Entressangles, B., Fontan, D. & Taieb, A. (1999). Sjögren–Larsson syndrome: early diagnosis, dietary management and biochemical studies in two cases. Dermatology, 198:340–345CrossRefGoogle ScholarPubMed
Domburg, P. H. M. F., Willemsen, M. A. A. P., Rotteveel, J. J., Jong, J. G. N. & Thijssen, H. O. M. (1999). Sjögren–Larsson syndrome. Clinical and MRI/MRS findings in FALDH-deficient patients. Neurology, 52:1345–1352CrossRefGoogle ScholarPubMed
Wall, W. J. & Worthington, B. S. (1979). Skeletal changes in Refsum's disease. Clinical Radiology, 30:657–659CrossRefGoogle ScholarPubMed
Wanders, R. J. A. (1999). Peroxisomal disorders: clinical, biochemical, and molecular aspects. Neurochemical Research, 24: 565–580CrossRefGoogle ScholarPubMed
Wanders, R. J., Ofman, R., Romeijn, G. J. et al. (1995). Measurement of dihydroxyacetone-phosphate acyltransferace (DHAPAT) in chorionic villous samples, blood cells and cultured cells. Journal of Inherited Metabolic Diseases, 18: (Suppl. 1): 90–100CrossRefGoogle ScholarPubMed
Wanders, R. J., Jansen, G. A. & Skjeldal, O. H. (2001). Refsum disease, peroxisomes and phytanic acid oxidation: a review. Journal of Neuropathology and Experimental Neurology, 60:1021–1031CrossRefGoogle ScholarPubMed
Wardinsky, T. D., Pagon, R. A., Powell, B. R. et al. (1990). Rhizomelic chondrodysplasia punctata and survival beyond one year: a review of the literature and five case reports. Clinical Genetics, 38:84–93CrossRefGoogle ScholarPubMed
Wells, T. R., Landing, B. H. & Bostwick, F. H. (1992). Studies of vertebral coronal cleft in rhizomelic chondrodysplasia punctata. Pediatric Pathology, 12:593–600CrossRefGoogle ScholarPubMed
Willemsen, M. A. A. P., Cruysberg, J. R. M., Rotteveel, J. J., Aandekerk, A. L., Domburg, P. H. M. F. & Deutman, A. F. (2000). Juvenile macular dystrophy associated with deficient activity of fatty aldehyde dehydrogenase in Sjögren–Larsson syndrome. American Journal of Opthalmology, 130:782–789CrossRefGoogle ScholarPubMed
Willemsen, M. A. A. P., Ijlst, L., Steijlen, P. M. et al. (2001a). Clinical, biochemical and molecular genetic characteristics of 19 patients with the Sjögren–Larsson syndrome. Brain, 124: 1426–1437CrossRefGoogle Scholar
Willemsen, M. A. A. P., Lutt, M. A. J., Steijlen, P. M. et al. (2001b). Clinical and biochemical effects of zileuton in patients with the Sjögren–Larsson syndrome. European Journal of Pediatrics, 160: 711–717CrossRefGoogle Scholar
Williams, D. W., Elster, A. D. & Cox, T. D. (1991). Cranial MR imaging in rhizomelic chondrodysplasia punctata. American Journal of Neuroradiology, 12:363–365Google ScholarPubMed
Williams, M. L. & Elias, P. M. (1987). Genetically transmitted, generalized disorders of cornification: the ichthyoses. Dermatologic Clinics, 5:155–175Google ScholarPubMed
Wills, A. J., Manning, N. J. & Reilly, M. M. (2001). Refsum's disease. Quarterly Journal of Medicine, 94:403–406CrossRefGoogle ScholarPubMed
Yamaguchi, K., & Handa, T. (1998). Sjögren–Larsson syndrome: postmortem brain abnormalities. Pediatric Neurology, 18: 338–341CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Peroxisomal disorders
    • By Jeffrey Kane, Specialty for Children, Austin, Texas, USA, E. Steve Roach, Wake Forest University School of Medicine, Winston-Salem, NC, USA
  • Edited by E. Steve Roach, Wake Forest University, North Carolina, Van S. Miller, University of Texas Southwestern Medical Center, Dallas
  • Book: Neurocutaneous Disorders
  • Online publication: 31 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545054.034
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Peroxisomal disorders
    • By Jeffrey Kane, Specialty for Children, Austin, Texas, USA, E. Steve Roach, Wake Forest University School of Medicine, Winston-Salem, NC, USA
  • Edited by E. Steve Roach, Wake Forest University, North Carolina, Van S. Miller, University of Texas Southwestern Medical Center, Dallas
  • Book: Neurocutaneous Disorders
  • Online publication: 31 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545054.034
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Peroxisomal disorders
    • By Jeffrey Kane, Specialty for Children, Austin, Texas, USA, E. Steve Roach, Wake Forest University School of Medicine, Winston-Salem, NC, USA
  • Edited by E. Steve Roach, Wake Forest University, North Carolina, Van S. Miller, University of Texas Southwestern Medical Center, Dallas
  • Book: Neurocutaneous Disorders
  • Online publication: 31 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545054.034
Available formats
×