Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T21:17:28.811Z Has data issue: false hasContentIssue false

9 - Initiation of transcription and RNA synthesis, processing and transport in HSV and VZV infected cells

from Part II - Basic virology and viral gene effects on host cell functions: alphaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Rozanne M. Sandri-Goldin
Affiliation:
Department of Microbiology & Molecular Genetics University of California, Irvine, CA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Initiation of transcription and RNA synthesis

The alphaherpesviruses, HSV -1 and VZV encode TATA -box containing promoters that are transcribed by the cellular RNA polymerase II

During productive infection by herpes simplex virus type 1 (HSV-1), approximately 80 genes encoded within the linear 152-kbp viral genome are expressed in three sequential phases that are termed immediate early (IE; α), early (E; β) and late (L; γ)(Honess and Roizman, 1974; McGeoch, 1991). The smaller, 125-kbp varicella zoster virus (VZV) genome encodes around 70 genes, which are also expressed as IE, E and L products (Davison and Scott, 1986). HSV -1 and VZV genes are transcribed by the cellular RNA Polymerase II and each viral promoter has a TATA box homology about 25 nucleotides upstream of the start site of transcription (for review, see Wagner et al., 1995). In HSV -1infections, the first genes to be transcribed are the five IE genes, which are distinguished from E and L genes by specific sequence elements termed TAATGARAT sequences in the upstream regions of IE promoters. These elements are recognized by a virion tegument protein, VP 16, which binds as part of a protein complex that contains two cellular factors, Oct-1 and HCF, to transcriptionally activate expression of IE genes (Wysocka and Herr, 2003). VZV IE genes do not appear to encode upstream promoter elements similar to the TAATGARAT sequence, however VZV does encode a protein, ORF 10 that exhibits similarities with VP 16, although its activity has been much less well characterized than that of VP 16 (Piette et al., 1995).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 128 - 137
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Advani, S. J., Weichselbaum, R. R., and Roizman, B. (2000). The role of cdc2 in the expression of herpes simplex virus genes. Proc. Natl Acad. Sci. USA, 97, 10996–11001.CrossRefGoogle ScholarPubMed
Advani, S. J., Hagglund, R., Weichselbaum, R. R., and Roizman, B. (2001). Posttranslational processing of infected cell proteins 0 and 4 of herpes simplex virus 1 is sequential and reflects the subcellular compartment in which the proteins localize. J. Virol., 75, 7904–7912.CrossRefGoogle Scholar
Baudoux, L., Defechereux, P., Rentier, B., and Piette, J. (2000). Gene activation by Varicella-zoster virus IE4 protein requires its dimerization and involves both the arginine-rich sequence, the central part, and the carboxyl-terminal cysteine-rich region. J. Biol. Chem., 275, 32822–32831.CrossRefGoogle ScholarPubMed
Besser, J., Sommer, M. H., Zerboni, L., Bagowski, C. P., Ito, H., Moffat, J., Ku, C. C., and Arvin, A. M. (2003). Differentiation of varicella-zoster virus ORF47 protein kinase and IE62 protein binding domains and their contribution to replication in human skin xenografts in the SCID-hu mouse. J. Virol., 77, 5964–5974.CrossRefGoogle ScholarPubMed
Bontems, S., Valentin, E., Baudoux, L., Rentier, B., Sadzot-Delvaux, C., and Piette, J. (2002a). Phosphorylation of varicella-zoster virus IE63 protein by casein kinases influences its cellular localization and gene regulation activity. J. Biol. Chem., 277, 21050–21060.CrossRefGoogle Scholar
Bontems, S., Valentin, E., Baudoux, L., Rentier, B., Sadzot-Delvaux, C., and Piette, J. (2002b). Phosphorylation of varicella-zoster virus IE63 protein by casein kinases influences its cellular localization and gene regulation activity. J. Biol. Chem., 277, 21050–21060.CrossRefGoogle Scholar
Boutell, C., Sadis, S., and Everett, R. D. (2002). Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J. Virol., 76, 841–850.CrossRefGoogle ScholarPubMed
Bruce, J. W. and Wilcox, K. W. (2002). Identification of a motif in the C terminus of herpes simplex virus regulatory protein ICP4 that contributes to activation of transcription. J. Virol., 76, 195–207.CrossRefGoogle Scholar
Bryant, H. E., Wadd, S., Lamond, A. I., Silverstein, S. J., and Clements, J. B. (2001). Herpes simplex virus IE63 (ICP27) protein interacts with spliceosome-associated protein 145 and inhibits splicing prior to the first catalytic step. J. Virol., 75, 4376–4385.CrossRefGoogle ScholarPubMed
Carrozza, M. J. and DeLuca, N. A. (1996). Interaction of the viral activator protein ICP4 with TFIID through TAF250. Mol. Cell. Biol., 16, 3085–3093.CrossRefGoogle ScholarPubMed
Chen, I. B., Sciabica, K. S., and Sandri-Goldin, R. M. (2002). ICP27 interacts with the export factor Aly/REF to direct herpes simplex virus 1 intronless RNAs to the TAP export pathway. J. Virol., 76, 12877–12889.CrossRefGoogle ScholarPubMed
Chen, I. B., Li, L., Silva, L., and Sandri-Golden, R. M. (2005). ICP27 recruits Aly/REF but not TAP/NXF1 to herpes simplex Virus type 1 transcription sites although TAP/NXF1 is required for ICP27 export. J. Virol., 79, 3949–3961.CrossRefGoogle Scholar
Cook, W. J., Gu, B., DeLuca, N. A., Moynihan, E. B., and Coen, D. M. (1995). Induction of transcription by a viral regulatory protein depends on the relative strengths of functional TATA boxes. Mol. Cell. Biol., 15, 4998–5006.CrossRefGoogle ScholarPubMed
Cullen, B. R. (2000). Connections between the processing and nuclear export of mRNA: evidence for an export license?Proc. Natl Acad. Sci. USA, 97, 4–6.CrossRefGoogle ScholarPubMed
Dai-Ju, J. Q., Li, L., Johnson, L. A., and Sandri-Goldin, R. M. (2006). ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus-1 transcription sites, where it undergoes proteasomal degradation during infection. J. Virol., 80, 3567–3581.Google Scholar
Davison, A. J. and Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus. J. Gen. Virol., 67, 1759–1816.CrossRefGoogle ScholarPubMed
Defechereux, P., Melen, L., Baudoux, L., Merville-Louis, M. P., Rentier, B., and Piette, J. (1993). Characterization of the regulatory functions of varicella-zoster virus open reading frame 4 gene product. J. Virol., 67, 4379–4385.Google ScholarPubMed
Defechereux, P., Debrus, S., Baudoux, L., Rentier, B., and Piette, J. (1997). Varicella-zoster virus open readinig frame 4 encodes an immediate-early protein with posttranscriptional regulatory properties. J. Virol., 71, 7073–7079.Google ScholarPubMed
DeLuca, N. A. and Schaffer, P. A. (1988). Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4. J. Virol., 62, 732–743.Google ScholarPubMed
DeLuca, N. A., McCarthy, A. M., and Schaffer, P. A. (1985). Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate–early regulatory protein ICP4. J. Virol., 56, 558–570.Google ScholarPubMed
Everett, R. D. (2000). ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays, 22, 761–770.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Everett, R. D. (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene, 20, 7266–7273.CrossRefGoogle ScholarPubMed
Everett, R. D., Paterson, T., and Elliot, M. (1990). The major transcriptional regulatory protein of herpes simplex virus type 1 includes a protease resistant DNA binding domain. Nucl. Acids Res., 18, 4579–4585.CrossRefGoogle ScholarPubMed
Everett, R. D., Elliot, R. M., Hope, G., and Orr, A. (1991a). Purification of the DNA binding domain of herpes simplex virus type 1 immediate-early protein Vmw175 as a homodimer and extensive mutagenesis of its DNA recognition site. Nucl. Acids Res., 19, 4901–4908.CrossRefGoogle Scholar
Everett, R. D., Orr, A., and Elliot, M. (1991b). High level expression and purification of herpes simplex virus type 1 immediate early polypeptide Vmw110. Nucl. Acids Res., 19, 6155–6161.CrossRefGoogle Scholar
Everett, R. D., Preston, C. M., and Stow, N. D. (1991c). Functional and genetic analysis of the role of Vmw110 in herpes simplex virus replication. In Herpesvirus Transcription and Its Regulation, ed. Wagner, E. K., pp. 49–73. Boca Ratan: CRC Press.Google Scholar
Everett, R. D., Meredith, D. M., Orr, A., Cross, A., Kathoria, M., and Parkinson, J. (1997). A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J., 16, 1519–1530.CrossRefGoogle ScholarPubMed
Everett, R. D., Freemont, P., Saitoh, H.et al. (1998a). The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J. Virol., 72, 6581–6591.Google Scholar
Everett, R. D., Orr, A., and Preston, C. M. (1998b). A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J., 17, 7169.CrossRefGoogle Scholar
Faber, S. W. and Wilcox, K. W. (1988). Association of herpes simplex virus regulatory protein ICP4 with sequences spanning the ICP4 gene transcription initiation site. Nucl. Acids Res., 16, 555–570.CrossRefGoogle ScholarPubMed
Felser, J. M., Kinchington, P. R., Inchauspe, G., Straus, S. E., and Ostrove, J. M. (1988). Cell lines containing varicella-zoster virus open reading frame 62 and expressing the “IE”175 protein complement ICP4 mutants of herpes simplex virus type 1. J. Virol., 62, 2076–2082.Google ScholarPubMed
Fraser, K. A. and Rice, S. A. (2005). Herpes simplex virus type 1 infection leads to loss of Serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II. J. Virol. 79, 11323–11334.CrossRefGoogle ScholarPubMed
Gallinari, P., Wiebauer, K., Nardi, M. C., and Jiricny, J. (1994). Localization of a 34-amino-acid segment implicated in dimerization of the herpes simplex virus type 1 ICP4 polypeptide by a dimerization trap. J. Virol., 68, 3809–3820.Google ScholarPubMed
Grondin, B. and DeLuca, N. A. (2000). Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J. Virol., 74, 11504–11510.CrossRefGoogle Scholar
Gu, B., Kuddus, R., and DeLuca, N. A. (1995). Repression of activator-mediated transcription by herpes simplex virus ICP4 via a mechanism involving interactions with the basal transcription factors TATA-binding protein and TFIIB. Mol. Cell. Biol., 15, 3618–3626.CrossRefGoogle Scholar
Guzowski, J. F. and Wagner, E. K. (1993). Mutational analysis of the herpes simplex virus type 1 strict late UL38 promoter/leader reveals two regions critical in transcriptional regulation. J. Virol., 67, 5098–5108.Google ScholarPubMed
Hagglund, R. and Roizman, B. (2002). Characterization of the novel E3 ubiquitin ligase encoded in exon 3 of herpes simplex virus-1-infected cell protein 0. Proc. Natl Acad. Sci. USA, 99, 7889–7894.CrossRefGoogle ScholarPubMed
Hagglund, R., Sant, C., Lopez, P., and Roizman, B. (2002). Herpes simplex virus 1-infected cell protein 0 contains two E3 ubiquitin ligase sites for different E2 ubiquitn-conjugating enzymes. Proc. Natl Acad. Sci. USA, 99, 631–636.CrossRefGoogle Scholar
Hann, L. E., Cook, W. J., Uprichard, S. L., Knipe, D. M., and Coen, D. M. (1998). The role of herpes simplex virus ICP27 in the regulation of UL24 gene expression by differential polyadenylation. J. Virol., 72, 7709–7714.Google ScholarPubMed
He, H., Boucaud, D., Hay, J., and Ruyechan, W. T. (2001). Cis and trans elements regulating expression of the varicella zoster gI gene. Arch. Virol., 17, 57–70.Google Scholar
Honess, R. W. and Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol., 41, 8–19.Google Scholar
Huang, Y., Gattoni, R., Stevenin, J., and Steitz, J. A. (2003). SR splicing factors serve as adaptor proteins for TAP-dependent mRNA export. Mol. Cell, 11, 837–843.CrossRefGoogle Scholar
Jenkins, H. L. and Spencer, C. A. (2001). RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells. J. Virol., 75, 9872–9884.CrossRefGoogle ScholarPubMed
Jordan, R. and Schaffer, P. A. (1997). Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis. J. Virol., 71, 6850–6862.Google ScholarPubMed
Kawaguchi, Y., Bruni, R., and Roizman, B. (1997). Interaction of herpes simplex virus 1regulatory protein ICP0 with elongation factor 1δ: ICP0 affects translational machinery. J. Virol., 71, 1019–1024.Google Scholar
Kawaguchi, Y., Tanaka, M., Yokoymama, A.et al. (2001). Herpes simplex virus 1 alpha regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL 1. Proc. Natl Acad. Sci. USA, 98, 1877–1882.Google Scholar
Kenyon, T. K., Lynch, J., Hay, J., Ruyechan, W., and Grose, C. (2003). Varicella-zoster virus ORF47 protein serine kinase: characterization of a cloned, biologically active phosphotransferase and two viral substrates, ORF62 and ORF63. J. Virol., 75, 8854–8858.CrossRefGoogle Scholar
Kim, D. and DeLuca, N. A. (2002). Phosphorylation of transcription factor Sp1 during herpes simplex virus type 1 infection. J. Virol., 76, 6473–6479.CrossRefGoogle ScholarPubMed
Kim, D., Zabierowski, S., and DeLuca, N. A. (2002). The initiator element in a herpes simplex virus type 1 late-gene promoter enhances activation by ICP4, resulting in abundant late gene expression. J. Virol., 76, 1548–1558.CrossRefGoogle Scholar
Kinchington, P. R., Fite, K., Seman, A., and Turse, S. E. (2001). Virion association of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, requires expression of the VZV open reading frame 66 protein kinase. J. Virol., 75, 9106–9113.CrossRefGoogle ScholarPubMed
Kinchington, P. R., Hougland, J. K., Arvin, A. M., Ruyechan, W. T., and Hay, J. (1992). The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J. Virol., 66, 359–366.Google ScholarPubMed
Koffa, M. D., Clements, J. B., Izaurralde, E.et al. (2001). Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO J., 20, 5769–5778.CrossRefGoogle ScholarPubMed
Komeili, A. and O'Shea, E. K. (2001). New perspectives on nuclear transport. Annu. Rev. Genet., 35, 341–364.CrossRefGoogle ScholarPubMed
Kristie, T. M. and Roizman, B. (1986). Site of the major regulatory protein alpha 4 specifically associated with promoter-regulatory domains of alpha genes of herpes simplex virus type 1. Proc. Natl Acad. Sci. USA, 83, 4700–4704.CrossRefGoogle ScholarPubMed
Leopardi, R., Michael, N., and Roizman, B. (1995). Repression of the herpes simplex virus 1 alpha 4 gene by its gene product (ICP4) within the context of the viral genome is conditioned by the distance and stereoaxial alignment of the ICP4 DNA binding site relative to the TATA box. J. Virol., 69, 3042–3048.Google ScholarPubMed
Leopardi, R., Ward, P. L., and Roizman, B. (1997). Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA Polymerase II, and viral DNA requires posttranslational modification by the UL 13 protein kinase. J. Virol., 71, 1133–1139.Google Scholar
Lomonte, P., Sullivan, K. F., and Everett, R. D. (2001). Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J. Biol. Chem., 276, 5829–5835.CrossRefGoogle ScholarPubMed
Long, M. C., Leong, V., Schaffer, P. A., Spencer, C. A., and Rice, S. A. (1999). ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J. Virol., 73, 5593–5604.Google ScholarPubMed
Lopez, P., Jacob, R. T., and Roizman, B. (2002). Overexpression of promyelocytic leukemia protein precludes the dispersal of ND10 structures and has no effect on accumlation of infectious herpes simplex virus 1 or its proteins. J. Virol., 76, 9355–9367.CrossRefGoogle ScholarPubMed
Luo, M. J. and Reed, R. (1999). Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl Acad. Sci. USA, 96, 14937–14942.CrossRefGoogle ScholarPubMed
Lynch, J. M., Kenyon, T. K., Grose, C., Hay, J., and Ruyechan, W. T. (2002). Physical and functional interaction between the varicella zoster virus IE63 and IE62 proteins. Virology, 302, 71–82.CrossRefGoogle ScholarPubMed
McGeoch, D. J. (1991). Correlation between HSV-1 DNA sequence and viral transcription maps. In Herpesvirus Transcription and Its Regulation, ed. Wagner, E. K., pp. 29–47. Boca Ratan: CRC Press, Inc.Google Scholar
McGregor, F., Phelan, A., Dunlop, J., and Clements, J. B. (1996). Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J. Virol., 70, 1931–1940.Google ScholarPubMed
McLauchlan, J., Phelan, A., Loney, C., Sandri-Goldin, R. M., and Clements, J. B. (1992). Herpes simplex virus IE63 acts at the posttranscriptional level to stimulate viral mRNA 3' processing. J. Virol., 66, 6939–6945.Google ScholarPubMed
Mears, W. E. and Rice, S. A. (1996). The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J. Virol., 70, 7445–7453.Google ScholarPubMed
Meier, J. L., Luo, X., Sawadogo, M., and Straus, S. E. (1994). The cellular transcription factor USF cooperates with varicella-zoster virus immediate–early protein 62 to symmetrically activate a bidirectional promoter. Mol. Cell. Biol., 14, 6896–6906.CrossRefGoogle Scholar
Michael, E., Kuck, K., and Kinchington, P. R. (1998). Anatomy of the varicella zoster virus open reading frame 4 promoter. J. Infect. Dis., 178, S27–S33.CrossRefGoogle ScholarPubMed
Moriuchi, M., Moriuchi, H., Debrus, S., Piette, J., and Cohen, J. I. (1995). The acidic amino-terminal region of varicella-zoster virus open reading frame 4 protein is required for transactivatioin and can functionally replace the corresponding region of herpes simplex virus ICP27. Virology, 208, 376–382.CrossRefGoogle ScholarPubMed
Ogle, W. O. and Roizman, B. (1999). Functional anatomy of herpes simplex virus 1 overlapping genes encoding infected-cell protein 22 and US1.5 protein. J. Virol., 73, 4305–4315.Google ScholarPubMed
Panagiotidis, C. A., Lium, E. K., and Silverstein, S. (1997). Physical and functional interactions between herpes simplex virus immediate-early proteins ICP4 and ICP27. J. Virol., 71, 1547–1557.Google ScholarPubMed
Parkinson, J. and Everett, R. D. (2000). Alphaherpesvirus proteins related to herpes simplex type 1 ICP0 affect cellular structures and proteins. J. Virol., 74, 10006–10017.CrossRefGoogle ScholarPubMed
Parkinson, J. and Everett, R. D. (2001). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 induce the formation of colocalizing, conjugated ubiquitin. J. Virol., 75, 5357–5362.CrossRefGoogle ScholarPubMed
Parkinson, J., Lees-Miller, S. P., and Everett, R. D. (1999). Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J. Virol., 73, 650–657.Google ScholarPubMed
Paterson, T. and Everett, R. D. (1988). Mutational dissection of the HSV-1 immediate-early protein Vmw175 involved in transcriptional transactivation and repression. Virology, 166, 186–196.CrossRefGoogle ScholarPubMed
Pederson, N. E., Person, S., and Homa, F. L. (1992). Analysis of the gB promoter of herpes simplex virus type 1: high-level expression requires both an 89-base-pair promoter fragment and a nontranslated leader sequence. J. Virol., 66, 6226–6236.Google Scholar
Peng, H., He, H., Hay, J., and Ruyechan, W. T. (2003). Interaction between varicella zoster virus IE62 major transactivator and cellular transcription factor Sp1. J. Biol. Chem., 278, 38068–38075.CrossRefGoogle ScholarPubMed
Perera, L. P. (2000). The TATA motif specifies the differential activation of minimal promoters by varicella zoster virus immediate-early regulatory protein IE62. J. Biol. Chem., 275, 487–496.CrossRefGoogle ScholarPubMed
Perera, L. P., Mosca, J. D., Ruyechan, W. T., Hayward, G. S., Straus, S. E., and Hay, J. (1993). A major transactivator of varicella-zoster virus, the immediate-early protein IE62, contains a potent N-terminal activation domain. J. Virol., 67, 4474–4483.Google Scholar
Perera, L. P., Kaushal, S., Kinchington, P. R., Mosca, J. D., Hayward, G. S., and Straus, S. E. (1994). Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homology ICP27. J. Virol., 68, 2468–2477.Google ScholarPubMed
Perkins, K. D., Gregonis, J., Borge, S., and Rice, S. A. (2003). Transactivation of a viral target gene by herpes simplex virus ICP27 is posttranscriptional and does not require the endogenous promoter or polyadeylation site. J. Virol., 77, 9872–9884.CrossRefGoogle ScholarPubMed
Piette, J., Defechereux, P., Baudoux, L., Debrus, S., Merville, M. P., and Rentier, B. (1995). Varicella-zoster virus gene regulation. Neurology, 45, S23–S27.CrossRefGoogle ScholarPubMed
Purves, F. C., Ogle, W. O., and Roizman, B. (1993). Processing of the herpes virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc. Natl Acad. Sci. USA, 90, 6701–6705.CrossRefGoogle ScholarPubMed
Rahaus, M. and Wolff, M. (2000). Transcription factor Sp1 is involved in the regulation of varicella zoster virus glycoprotein E. Virus Res., 69, 69–81.CrossRefGoogle ScholarPubMed
Reed, R. (2003). Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol., 15, 326–331.CrossRefGoogle ScholarPubMed
Reed, R. and Magni, K. (2001). A new view of mRNA export: separating the wheat from the chaff. Nature Cell Biol., 3, 201–204.CrossRefGoogle ScholarPubMed
Rice, S. A., Long, M. C., Lam, V., Schaffer, P. A., and Spencer, C. A. (1995). Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J. Virol., 69, 5550–5559.Google ScholarPubMed
Ruyechan, W. T., Peng, H., Yang, M., and Hay, J. (2003). Cellular factors and IE62 activation of VZV promoters. J. Med. Virol., 70, S90–S94.CrossRefGoogle ScholarPubMed
Sandri-Goldin, R. M. (1998). ICP27 mediates herpes simplex virus RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev., 12, 868–879.CrossRefGoogle Scholar
Sato, B., Ito, H., Hinchliffe, S., Sommer, M. H., Zerboni, L., and Arvin, A. M. (2003). Mutational analysis of open reading frame 62 and 71, encoding the varicella-zoster virus immediate–early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J. Virol., 77, 5607–5620.CrossRefGoogle ScholarPubMed
Sciabica, K. S., Dai, Q. J., and Sandri-Goldin, R. M. (2003). ICP27 interacts with SRPK1 to mediate HSV-1 inhibtion of pre-mRNA splicing by altering SR protein phosphorylation. EMBO J., 22, 1608–1619.CrossRefGoogle Scholar
Shepard, A. A., Imbalzano, A. N., and DeLuca, N. A. (1989). Separation of primary structural components conferring autoregulation, transactivation, and DNA-binding properties to the herpes simplex virus transcriptional regulatory protein ICP4. J. Virol., 63, 3714–3728.Google ScholarPubMed
Shepard, A. A., Tolentino, P., and DeLuca, N. A. (1990). Trans-dominant inhibition of herpes simplex virus transcriptional regulatory protein ICP4 by heterodimer formation. J. Virol., 64, 3916–3926.Google ScholarPubMed
Smiley, J. R., Johnson, D. C., Pizer, L. I., and Everett, R. D. (1992). The ICP4 binding sites in the herpes simplex virus type 1 glycoprotein D (gD) promoter are not essential for efficient gD transcription during virus infection. J. Virol., 66, 623–631.Google Scholar
Smith, C. A., Bates, P., Rivera-Gonzolos, R., Gu, B., and DeLuca, N. A. (1993). ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1 forms tripartite complex with TATA-binding protein and TFIIB. J. Virol., 67, 4676–4687.Google ScholarPubMed
Sommer, M. H., Zagha, E., Serrano, O. K.et al. (2001). Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella zoster virus. J. Virol., 75, 8224–8239.CrossRefGoogle ScholarPubMed
Spencer, C. A., Dahmus, M. E., and Rice, S. A. (1997). Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J. Virol., 71, 2031–2040.Google ScholarPubMed
Spengler, M. L., Ruyechan, W. T., and Hay, J. (2000). Physical interaction between two varicella zoster virus gene regulatory proteins, IE4 and IE62. Virology, 272, 375–381.CrossRefGoogle ScholarPubMed
Stevenson, D., Xue, M., Hay, J., and Ruyechan, W. T. (1996). Phosphorylation and nuclear localization of the varicella zoster virus gene 63 protein. J. Virol., 70, 658–662.Google ScholarPubMed
Sant, C., Kawaguchi, Y., and Roizman, B. (1999). A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0 abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate. Proc. Natl Acad. Sci. USA, 96, 8184–8189.CrossRefGoogle Scholar
Sant, C., Lopez, P., Advani, S. J., and Roizman, B. (2001). Role of cyclin D3 in the biology of herpes simplex virus 1 ICPO. J. Virol., 75, 1888–1898.CrossRefGoogle ScholarPubMed
Vaughan, P. J., Thibault, K. J., Hardwicke, M. A., and Sandri-Goldin, R. M. (1992). The herpes simpex virus type 1 immediate early protein ICP27 encodes a potential metal binding domain and is able to bind to zinc. Virology, 189, 377–384.CrossRefGoogle Scholar
Wagner, E. K., Guzowski, J. F., and Singh, J. (1995). Transcription of the herpes simplex virus genome during productive and latent infection. Progr. Nucl. Acid Res. Mol. Biol., 51, 123–165.CrossRefGoogle ScholarPubMed
Wu, C.-L. and Wilcox, K. W. (1990). Codons 262 to 490 from the herpes simplex virus ICP4 gene are sufficient to encode a sequence-specific DNA binding protein. Nucl. Acids Res., 18, 531–538.CrossRefGoogle ScholarPubMed
Wysocka, J. and Herr, W. (2003). The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem. Sci., 28, 294–304.CrossRefGoogle ScholarPubMed
Xia, K., DeLuca, N. A., and Knipe, D. M. (1996a). Analysis of phosphorylation sites of herpes simplex virus type 1 ICP4. J. Virol., 70, 1061–1071.Google Scholar
Xia, K., Knipe, D. M., and DeLuca, N. A. (1996b). Role of protein kinase A and the serine-rich region of herpes simplex virus type ICP4 in viral replication. J. Virol., 70, 1050–1060.Google Scholar
Xiao, W., Pizer, L. I., and Wilcox, K. W. (1997). Identification of a promoter specific transactivation domain in the herpes simplex virus regulatory protein ICP4. J. Virol., 71, 1757–1765.Google ScholarPubMed
Yao, F. and Schaffer, P. A. (1994). Physical interaction between the herpes simplex virus type 1 immediate–early regulatory proteins ICP0 and ICP4. J. Virol., 68, 8158–8168.Google ScholarPubMed
Zenklusen, D. and Stutz, F. (2001). Nuclear export of mRNA. FEBS Lett. 498, 150–156.CrossRefGoogle ScholarPubMed
Zhi, Y. and Sandri-Goldin, R. M. (1999). Analysis of the phosphorylation sites of the herpes simplex virus type 1 regulatory protein ICP27. J. Virol., 73, 3246–3257.Google ScholarPubMed
Zhi, Y., Sciabica, K. S., and Sandri-Goldin, R. M. (1999). Self interaction of the herpes simplex virus type 1 regulatory protein ICP27. Virology, 257, 341–351.CrossRefGoogle ScholarPubMed
Zhou, C. and Knipe, D. M. (2001). Association of herpes simplex virus 1 ICP8 and ICP27 with cellular RNA polymerase II holoenzyme. J. Virol., 76, 5893–5904.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×