Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T23:28:02.230Z Has data issue: false hasContentIssue false

60 - Rhabdomyosarcoma

from Part VI - Oncology

Published online by Cambridge University Press:  08 January 2010

Dave R. Lal
Affiliation:
Department of Surgery and Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
Charles A. Sklar
Affiliation:
Department of Surgery and Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
Michael P. LaQuaglia
Affiliation:
Department of Surgery and Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
Mark D. Stringer
Affiliation:
University of Otago, New Zealand
Keith T. Oldham
Affiliation:
Children's Hospital of Wisconsin
Pierre D. E. Mouriquand
Affiliation:
Debrousse Hospital, Lyon
Get access

Summary

Soft tissue sarcomas are the sixth most common malignancy of childhood, with rhabdomyosarcoma (RMS) by far the most frequent. In the United States, approximately 350 cases of RMS are diagnosed per year. Since 1975, the yearly incidence of RMS has remained stable at approximately 4 per 1 million children younger than 20 years of age.

Over the last 30 years, improved survival and decreased morbidity in treatment of RMS have been accomplished through collaborative clinical trials in both the United States and Europe. In the United States the Intergroup Rhabdomyosarcoma Study Group (IRSG) was established in 1972. Their mission has been to enroll all children diagnosed in North America into randomized prospective clinical trials. This has largely been accomplished with over 80% of North American children diagnosed with RMS enrolled in one of four completed IRSG studies. Since the inception of the IRSG, the overall survival for patients with RMS has improved from about 25% to over 70%. Much of this improvement has been the result of a multidisciplinary approach to rhabdomyosarcoma including surgeons, oncologists, and radiation oncologists. The IRSG (now called the Children's Oncology Group soft tissue sarcoma committee) continues to strive for improved survival with decreasing patient morbidity, and is currently accruing patients for its fifth trial (IRS-V).

Currently, orbital tumors have the best prognosis with a 5-year survival of approximately 95%.

Type
Chapter
Information
Pediatric Surgery and Urology
Long-Term Outcomes
, pp. 782 - 798
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reis, L., Eisner, M. P., Kosary, C. L., et al.SEER Cancer Statistic Review, 1975–2000. Bethesda, MD: National Cancer Institute, 2003.Google Scholar
Donaldson, S. S., Meza, J., Breneman, J. C.et al.Results from the IRS-IV randomized trial of hyperfractionated radiotherapy in children with rhabdomyosarcoma – a report from the IRSG. Int. J. Radiat. Oncol. Biol. Phys. 2001; 51:718–728.CrossRefGoogle ScholarPubMed
Wolden, S. L., Anderson, J. R., Crist, W. M.et al.Indications for radiotherapy and chemotherapy after complete resection in rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma Studies I to III. J. Clin. Oncol. 1999; 17:3468–3475.CrossRefGoogle ScholarPubMed
Nag, S., Tippin, D., & Ruymann, F. B.Long-term morbidity in children treated with fractionated high-dose-rate brachytherapy for soft tissue sarcomas. J. Pediatr. Hematol. Oncol. 2003; 25:448–452.CrossRefGoogle ScholarPubMed
Blatt, J. Copeland, D. R., & Bleyer, W. A.Late Effects of Childhood Cancer and its Treatment. Philadelphia: J. B. Lippincott, 1993.Google Scholar
Steinherz, L. J., Steinherz, P. G., & Tan, C.Cardiac failure and dysrhythmias 6–19 years after anthracycline therapy: a series of 15 patients. Med. Pediatr. Oncol. 1995; 24:352–361.CrossRefGoogle ScholarPubMed
Steinherz, L. J., Steinherz, P. G., Tan, C. T.et al.Cardiac toxicity 4 to 20 years after completing anthracycline therapy. J. Am. Med. Assoc. 1991; 266:1672–1677.CrossRefGoogle ScholarPubMed
Silber, J. H., Jakacki, R. I., Larsen, R. L.et al.Increased risk of cardiac dysfunction after anthracyclines in girls. Med. Pediatr. Oncol. 1993; 21:477–479.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Colan, S. D., Gelber, R. D.et al.Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med. 1991; 324:808–815.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Lipsitz, S. R., Mone, S. M.et al.Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med. 1995; 332:1738–1743.CrossRefGoogle ScholarPubMed
Langer, T., Stohr, W., Bielack, S.et al.Late effects surveillance system for sarcoma patients. Pediatr. Blood Cancer 2004; 42:373–379.CrossRefGoogle ScholarPubMed
Silber, J. H., Cnaan, A., Clark, B. J.et al.Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J. Clin. Oncol. 2004; 22:820–828.CrossRefGoogle ScholarPubMed
Littman, P., Meadows, A. T., Polgar, G.et al.Pulmonary function in survivors of Wilm's tumor. Patterns of impairment. Cancer 1976; 37:2773–2776.3.0.CO;2-6>CrossRefGoogle Scholar
Miller, R. W., Fusner, J. E., Fink, R. J.et al.Pulmonary function abnormalities in long-term survivors of childhood cancer. Med. Pediatr. Oncol. 1986; 14:202–207.CrossRefGoogle ScholarPubMed
Eigen, H. & Wyszomierski, D.Bleomycin lung injury in children. Pathophysiology and guidelines for management. Am. J. Pediatr. Hematol. Oncol. 1985; 7:71–78.Google ScholarPubMed
Driscoll, O' B. R., Hasleton, P. S., Taylor, P. M.et al.Active lung fibrosis up to 17 years after chemotherapy with carmustine (BCNU) in childhood. N. Engl. J. Med. 1990; 323:378–382.CrossRefGoogle Scholar
Kaplan, E., Sklar, C., Wilmott, R.et al.Pulmonary function in children treated for rhabdomyosarcoma. Med. Pediatr. Oncol. 1996; 27:79–84.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Ellenhorn, J. D., Lambroza, A., Lindsley, K. L.et al.Treatment-related esophageal stricture in pediatric patients with cancer. Cancer 1993; 71:4084–4090.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Rao, S. P., Anderson, V., Shlasko, E.et al.Intestinal perforation 14 years after abdominal irradiation and chemotherapy for Wilms tumor. J. Pediatr. Hematol. Oncol. 1996; 18:187–190.CrossRefGoogle ScholarPubMed
Touboul, E., Balosso, J., Schlienger, M.et al.Radiation injury of the small intestine. Radiobiological, radiopathological aspects; risk factors and prevention. Ann. Chir. 1996; 50:58–71.Google Scholar
Bannura, G.Surgical treatment of intestinal complications of pelvic radiotherapy. Rev. Med. Child. 1995; 123:991–996.Google ScholarPubMed
Donaldson, S. S., Jundt, S., Ricour, C.et al.Radiation enteritis in children. A retrospective review, clinicopathologic correlation, and dietary management. Cancer 1975; 35:1167–1178.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Oya, M., Yao, T., & Tsuneyoshi, M.Chronic irradiation enteritis: its correlation with the elapsed time interval and morphological changes. Hum. Pathol. 1996; 27:774–781.CrossRefGoogle ScholarPubMed
Meric, F., Hirschl, R. B., Mahboubi, S.et al.Prevention of radiation enteritis in children, using a pelvic mesh sling. J. Pediatr. Surg. 1994; 29:917–921.CrossRefGoogle ScholarPubMed
Logmans, A., Trimbos, J. B., & Lent, M.The omentoplasty: a neglected ally in gynecologic surgery. Eur. J. Obstet. Gynecol. Reprod. Biol. 1995; 58:167–171.CrossRefGoogle ScholarPubMed
Lechner, P. & Cesnik, H.Abdominopelvic omentopexy: preparatory procedure for radiotherapy in rectal cancer. Dis. Colon Rectum 1992; 35:1157–1160.CrossRefGoogle ScholarPubMed
Silvain, C., Besson, I., Ingrand, P.et al.Long-term outcome of severe radiation enteritis treated by total parenteral nutrition. Dig. Dis. Sci. 1992; 37:1065–1071.CrossRefGoogle ScholarPubMed
Michalkiewicz, E. L., Rao, B. N., Gross, E.et al.Complications of pelvic exenteration in children who have genitourinary rhabdomyosarcoma. J. Pediatr. Surg. 1997; 32:1277–1282.CrossRefGoogle ScholarPubMed
Aubier, F., Flamant, F., Brauner, R.et al.Male gonadal function after chemotherapy for solid tumors in childhood. J. Clin. Oncol. 1989; 7:304–309.CrossRefGoogle ScholarPubMed
Damewood, M. D. & Grochow, L. B.Prospects for fertility after chemotherapy or radiation for neoplastic disease. Fertil. Steril. 1986; 45:443–459.Google ScholarPubMed
Klein, C. E. In Armitage, J. O. & Antman, K. H. (eds). High Dose Cancer Therapy: Pharmacology, Hematopoietins, Stem Cells. Baltimore: Williams and Wilkins, 1992; 555–566.Google Scholar
Horning, S. J., Hoppe, R. T., Kaplan, H. S.et al.Female reproductive potential after treatment for Hodgkin's disease. N. Engl. J. Med. 1981; 304:1377–1382.CrossRefGoogle ScholarPubMed
Lushbaugh, C. C. & Casarett, G. W.The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer 1976; 37:1111–1125.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Withers, H. R.Biologic basis for altered fractionation schemes. Cancer 1985; 55:2086–2095.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Yahalom J. Strategies for the use of total body irradiation as systemic therapy in leukemia and lymphoma. In Armitage, J. O. & Antman, K. H. (eds). High Dose Cancer Therapy: Pharmacology, Hematopoietins, Stem Cells. Baltimore: Williams and Wilkins, 1992; 61–83.Google Scholar
Clayton, P. E., Shalet, S. M., Price, D. A.et al.Testicular damage after chemotherapy for childhood brain tumors. J. Pediatr. 1988; 112:922–926.CrossRefGoogle ScholarPubMed
Siimes, M. A., Rautonen, J., Makipernaa, A.et al.Testicular function in adult males surviving childhood malignancy. Pediatr. Hematol. Oncol. 1995; 12:231–241.CrossRefGoogle ScholarPubMed
Shalet, S. M., Beardwell, C. G., Jacobs, H. S.et al.Testicular function following irradiation of the human prepubertal testis. Clin. Endocrinol. (Oxf.) 1978; 9:483–490.CrossRefGoogle ScholarPubMed
Sklar, C. A., Robison, L. L., Nesbit, M. E.et al.Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J. Clin. Oncol. 1990; 8:1981–1987.CrossRefGoogle ScholarPubMed
Jaffe, N., Sullivan, M. P., Ried, H.et al.Male reproductive function in long-term survivors of childhood cancer. Med. Pediatr. Oncol. 1988; 16:241–247.CrossRefGoogle ScholarPubMed
Heyn, R., Raney, R. B. Jr., Hays, D. M.et al.Late effects of therapy in patients with paratesticular rhabdomyosarcoma. Intergroup Rhabdomyosarcoma Study Committee. J. Clin. Oncol. 1992; 10:614–623.CrossRefGoogle ScholarPubMed
Leiper, A. D., Grant, D. B., & Chessells, J. M.Gonadal function after testicular radiation for acute lymphoblastic leukaemia. Arch. Dis. Child. 1986; 61:53–56.CrossRefGoogle ScholarPubMed
Rappaport, R. & Brauner, R.Growth and endocrine disorders secondary to cranial irradiation. Pediatr. Res. 1989; 25:561–567.CrossRefGoogle ScholarPubMed
Raney, B. Jr., Heyn, R., Hays, D. M.et al.Sequelae of treatment in 109 patients followed for 5 to 15 years after diagnosis of sarcoma of the bladder and prostate. A report from the Intergroup Rhabdomyosarcoma Study Committee. Cancer 1993; 71:2387–2394.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Clayton, P. E., Shalet, S. M., Price, D. A.et al.Ovarian function following chemotherapy for childhood brain tumours. Med. Pediatr. Oncol. 1989; 17:92–96.CrossRefGoogle ScholarPubMed
Bajorunas, D. R., Ghavimi, F., Jereb, B.et al.Endocrine sequelae of antineoplastic therapy in childhood head and neck malignancies. J. Clin. Endocrinol. Metab. 1980; 50:329–335.CrossRefGoogle ScholarPubMed
Larsen, E. C., Muller, J., Schmiegelow, K.et al.Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. Obstet. Gynecol. Surv. 2004; 59:354–355.CrossRefGoogle Scholar
Kim, S. S.Ovarian tissue banking for cancer patients. To do or not to do?Hum. Reprod. 2003; 18:1759–1761.CrossRefGoogle ScholarPubMed
Baker, T. G.Radiosensitivity of mammalian oocytes with particular reference to the human female. Am. J. Obstet. Gynecol. 1971; 110:746–761.CrossRefGoogle ScholarPubMed
Stillman, R. J., Schinfeld, J. S., Schiff, I.et al.Ovarian failure in long-term survivors of childhood malignancy. Am. J. Obstet. Gynecol. 1981; 139:62–66.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Hendry, J. H.et al.Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br. J. Radiol. 1989; 62:995–998.CrossRefGoogle ScholarPubMed
Hamre, M. R., Robison, L. L., Nesbit, M. E.et al.Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J. Clin. Oncol. 1987; 5:1759–1765.CrossRefGoogle ScholarPubMed
Thibaud, E., Ramirez, M., Brauner, R.et al.Preservation of ovarian function by ovarian transposition performed before pelvic irradiation during childhood. J. Pediatr. 1992; 121:880–884.CrossRefGoogle ScholarPubMed
Flamant, F., Gerbaulet, A., Nihoul-Fekete, C.et al.Long-term sequelae of conservative treatment by surgery, brachytherapy, and chemotherapy for vulval and vaginal rhabdomyosarcoma in children. J. Clin. Oncol. 1990; 8:1847–1853.CrossRefGoogle ScholarPubMed
Green, D. M., Zevon, M. A., Lowrie, G.et al.Congenital anomalies in children of patients who received chemotherapy for cancer in childhood and adolescence. N. Engl. J. Med. 1991; 325:141–146.CrossRefGoogle ScholarPubMed
Mulvihill, J. J., Myers, M. H., Connelly, R. R.et al.Cancer in offspring of long-term survivors of childhood and adolescent cancer. Lancet 1987; 2:813–817.CrossRefGoogle ScholarPubMed
Li, F. P., Gimbrere, K., Gelber, R. D.et al.Outcome of pregnancy in survivors of Wilms' tumor. J. Am. Med. Assoc. 1987; 257:216–219.CrossRefGoogle ScholarPubMed
Hawkins, M. M. & Smith, R. A.Pregnancy outcomes in childhood cancer survivors: probable effects of abdominal irradiation. Int. J. Cancer 1989; 43:399–402.CrossRefGoogle ScholarPubMed
Jaffe, N., McNeese, M., Mayfield, J. K.et al.Childhood urologic cancer therapy related sequelae and their impact on management. Cancer 1980; 45:1815–1822.CrossRefGoogle ScholarPubMed
Nijman, J. M., Schraffordt Koops, H., Oldhoff, J.et al.Sexual function after bilateral retroperitoneal lymph node dissection for nonseminomatous testicular cancer. Arch. Androl. 1987; 18:255–267.CrossRefGoogle ScholarPubMed
Nijman, J. M., Schraffordt Koops, H., Kremer, J.et al.Gonadal function after surgery and chemotherapy in men with stage II and III nonseminomatous testicular tumors. J. Clin. Oncol. 1987; 5:651–656.CrossRefGoogle ScholarPubMed
Takasaki, N., Okada, S., Kawasaki, T.et al.Studies on retroperitoneal lymph node dissection concerning postoperative ejaculatory function in patients with testicular cancer. Hinyokika Kiyo 1991; 37:213–219.Google ScholarPubMed
Kihara, K., Sato, K., Ando, M.et al.A mechanism of retrograde ejaculation after bilateral hypogastric nerve transections in the dog. J. Urol. 1992; 148:1307–1309.CrossRefGoogle ScholarPubMed
Tekgul, S., Ozen, H. A., Celebi, I.et al.Postchemotherapeutic surgery for metastatic testicular germ cell tumors: results of extended primary chemotherapy and limited surgery. Urology 1994; 43:349–354.CrossRefGoogle ScholarPubMed
Markman, M., Rothman, R., Hakes, T.et al.Late effects of cisplatin-based chemotherapy on renal function in patients with ovarian carcinoma. Gynecol. Oncol. 1991; 41:217–219.CrossRefGoogle ScholarPubMed
Hamilton, C. R., Bliss, J. M., & Horwich, A.The late effects of cis-platinum on renal function. Eur. J. Cancer Clin. Oncol. 1989; 25:185–189.CrossRefGoogle ScholarPubMed
Fillastre, J. P., Moulin, B., Godin, M.et al.Renal complications of anti-cancer chemotherapy. Pathol. Biol. (Paris) 1986; 34:1013–1028.Google ScholarPubMed
Skinner, R., Pearson, A. D., English, M. W.et al.Risk factors for ifosfamide nephrotoxicity in children. Lancet 1996; 348:578–580.CrossRefGoogle ScholarPubMed
Ashraf, M. S., Brady, J., Breatnach, F.et al.Ifosfamide nephrotoxicity in paediatric cancer patients. Eur. J. Pediatr. 1994; 153:90–94.CrossRefGoogle ScholarPubMed
Fichtner, J. & Hohenfellner, R.Damage to the urinary tract secondary to irradiation. World. J. Urol. 1995; 13:240–242.CrossRefGoogle ScholarPubMed
Londergan, T. A. & Walzak, M. P.Hemorrhagic cystitis due to adenovirus infection following bone marrow transplantation. J. Urol. 1994; 151:1013–1014.CrossRefGoogle ScholarPubMed
Dewan, A. K., Mohan, G. M., & Ravi, R.Intravesical formalin for hemorrhagic cystitis following irradiation of cancer of the cervix. Int. J. Gynaecol. Obstet. 1993; 42:131–135.CrossRefGoogle ScholarPubMed
Komiya, I., Nojiri, M., Kuriya, S.et al.Hemorrhagic cystitis caused by bleomycin treatment. Jpn. J. Med. 1991; 30:392,CrossRefGoogle ScholarPubMed
Miller, L. J., Chandler, S. W., & Ippoliti, C. M.Treatment of cyclophosphamide-induced hemorrhagic cystitis with prostaglandins. Ann. Pharmacother. 1994; 28:590–594.CrossRefGoogle ScholarPubMed
Zagoria, R. J., Hodge, R. G., Dyer, R. B.et al.Percutaneous nephrostomy for treatment of intractable hemorrhagic cystitis. J. Urol. 1993; 149:1449–1451.CrossRefGoogle ScholarPubMed
Talesnik, E., Lagomarsino, E., Gayan, A.et al.Chronic hemorrhagic cystitis induced by cyclophosphamide in dermatomyositis refractory to corticosteroid treatment. Rev. Child. Pediatr. 1991; 62:121–124.Google ScholarPubMed
Fernandes, E. T., Manivel, J. C., Reddy, P. K.et al.Cyclophosphamide associated bladder cancer – a highly aggressive disease: analysis of 12 cases. J. Urol. 1996; 156:1931–1933.CrossRefGoogle ScholarPubMed
Talar-Williams, C., Hijazi, Y. M., Walther, M. M.et al.Cyclophosphamide-induced cystitis and bladder cancer in patients with Wegener granulomatosis. Ann. Intern. Med. 1996; 124:477–484.CrossRefGoogle ScholarPubMed
Travis, L. B., Curtis, R. E., Glimelius, B.et al.Bladder and kidney cancer following cyclophosphamide therapy for non-Hodgkin's lymphoma. J. Natl. Cancer. Inst. 1995; 87:524–530.CrossRefGoogle ScholarPubMed
Tefft, M., Lattin, P. B., Jereb, B.et al.Acute and late effects on normal tissues following combined chemo- and radiotherapy for childhood rhabdomyosarcoma and Ewing's sarcoma. Cancer 1976; 37:1201–1217.3.0.CO;2-B>CrossRefGoogle Scholar
Fromm, M., Littman, P., Raney, R. B.et al.Late effects after treatment of twenty children with soft tissue sarcomas of the head and neck. Experience at a single institution with a review of the literature. Cancer 1986; 57:2070–2076.3.0.CO;2-G>CrossRefGoogle Scholar
Heyn, R., Ragab, A., Raney, R. B. Jr.et al.Late effects of therapy in orbital rhabdomyosarcoma in children. A report from the Intergroup Rhabdomyosarcoma Study. Cancer 1986; 57:1738–1743.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Jaffe, N., Toth, B. B., Hoar, R. E.et al.Dental and maxillofacial abnormalities in long-term survivors of childhood cancer: effects of treatment with chemotherapy and radiation to the head and neck. Pediatrics 1984; 73:816–823.Google ScholarPubMed
Shalet, S. M., Gibson, B., Swindell, R.et al.Effect of spinal irradiation on growth. Arch. Dis. Child. 1987; 62:461–464.CrossRefGoogle ScholarPubMed
Papadakis, V., Tan, C., Heller, G.et al.Growth and final height after treatment for childhood Hodgkin disease. J. Pediatr. Hematol. Oncol. 1996; 18:272–276.CrossRefGoogle ScholarPubMed
Wallace, W. H., Shalet, S. M., Morris-Jones, P. H.et al.Effect of abdominal irradiation on growth in boys treated for a Wilms' tumor. Med. Pediatr. Oncol. 1990; 18:441–446.CrossRefGoogle ScholarPubMed
Hughes, L. L., Baruzzi, M. J., Ribeiro, R. C.et al.Paratesticular rhabdomyosarcoma: delayed effects of multimodality therapy and implications for current management. Cancer 1994; 73:476–482.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Raney, R. B., Asmar, L., Vassilopoulou-Sellin, R.et al.Late complications of therapy in 213 children with localized, nonorbital soft-tissue sarcoma of the head and neck: A descriptive report from the Intergroup Rhabdomyosarcoma Studies (IRS)-II and – III. IRS Group of the Children's Cancer Group and the Pediatric Oncology Group. Med. Pediatr. Oncol. 1999; 33:362–371.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Meadows, A. T., Baum, E., Fossati-Bellani, F.et al.Second malignant neoplasms in children: an update from the Late Effects Study Group. J. Clin. Oncol. 1985; 3:532–538.CrossRefGoogle ScholarPubMed
Heyn, R., Khan, F., Ensign, L. G.et al.Acute myeloid leukemia in patients treated for rhabdomyosarcoma with cyclophosphamide and low-dose etoposide on Intergroup Rhabdomyosarcoma Study III: an interim report. Med. Pediatr. Oncol. 1994; 23:99–106.CrossRefGoogle Scholar
Tucker, M. A. M. A., Boice J. D., Hoover, R. N., & Fraumeni, J. F. Cancer risk following treatment of childhood cancer. In Boice, J. D. Jr. & Fraumeni, J. F. (eds) Radiation Carcinogenesis: Epidemiological and Biological Significance. New York: Raven Press, 1984; 211–224.Google Scholar
Hartley, A. L., Birch, J. M., Blair, V.et al.Patterns of cancer in the families of children with soft tissue sarcoma. Cancer 1993; 72:923–930.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Heyn, R., Haeberlen, V., Newton, W. A.et al.Second malignant neoplasms in children treated for rhabdomyosarcoma. Intergroup Rhabdomyosarcoma Study Committee. J. Clin. Oncol. 1993; 11:262–270.CrossRefGoogle ScholarPubMed
Scaradavou, A., Heller, G., Sklar, C. A.et al.Second malignant neoplasms in long-term survivors of childhood rhabdomyosarcoma. Cancer 1995; 76:1860–1867.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Sklar, C. A. & Constine, L. S.Chronic neuroendocrinological sequelae of radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1995; 31:1113–1121.CrossRefGoogle ScholarPubMed
Clayton, P. E. & Shalet, S. M.Dose dependency of time of onset of radiation-induced growth hormone deficiency. J. Pediatr. 1991; 118:226–228.CrossRefGoogle ScholarPubMed
Sklar, C. A.Growth following therapy for childhood cancer. Cancer Invest. 1995; 13:511–516.CrossRefGoogle ScholarPubMed
Ellis, F.Dose, time and fractionation: a clinical hypothesis. Clin. Radiol. 1969; 20:1–7.CrossRefGoogle ScholarPubMed
Richards, G. E., Wara, W. M., Grumbach, M. M.et al.Delayed onset of hypopituitarism: sequelae of therapeutic irradiation of central nervous system, eye, and middle ear tumors. J. Pediatr. 1976; 89:553–559.CrossRefGoogle ScholarPubMed
Rose, S. R., Schreiber, R. E., Kearney, N. S.et al.Hypothalamic dysfunction after chemotherapy. J. Pediatr. Endocrinol. Metab. 2004; 17:55–66.CrossRefGoogle ScholarPubMed
Sulmont, V., Brauner, R., Fontoura, M.et al.Response to growth hormone treatment and final height after cranial or craniospinal irradiation. Acta. Paediatr. Scand. 1990; 79:542–9.CrossRefGoogle ScholarPubMed
Clayton, P. E., Shalet, S. M., & Price, D. A.Growth response to growth hormone therapy following craniospinal irradiation. Eur. J. Pediatr. 1988; 147:597–601.CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, A. L., Ryder, W. D., Gattamaneni, H. R.et al.Growth hormone and tumour recurrence. BR. Med. J. 1992; 304:1601–1605.CrossRefGoogle ScholarPubMed
Moshang, T.Is brain tumor recurrence increased following growth hormone treatment?Trends Endocrinol. Metab. 1995; 6:205–209.CrossRefGoogle ScholarPubMed
Sklar, C. A., Mertens, A. C., Mitby, P.et al.Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J. Clin. Endocrinol. Metab. 2002; 87:3136–3141.CrossRefGoogle ScholarPubMed
Leiper, A. D., Stanhope, R., Lau, T.et al.The effect of total body irradiation and bone marrow transplantation during childhood and adolescence on growth and endocrine function. Br. J. Haematol. 1987; 67:419–426.CrossRefGoogle ScholarPubMed
Oberfield, S. E., Soranno, D., Nirenberg, A.et al.Age at onset of puberty following high-dose central nervous system radiation therapy. Arch. Pediatr. Adolesc. Med. 1996; 150:589–592.CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, A. L., Clayton, P. E., & Shalet, S. M.Cranial irradiation and early puberty. J. Clin. Endocrinol. Metab. 1994; 78:1282–1286.Google ScholarPubMed
Saggese, G., Cesaretti, G., Andreani, G.et al.Combined treatment with growth hormone and gonadotropin-releasing hormone analogues in children with isolated growth hormone deficiency. Acta. Endocrinol. (Copenh.) 1992; 127:307–312.Google ScholarPubMed
Cara, J. F., Kreiter, M. L., & Rosenfield, R. L.Height prognosis of children with true precocious puberty and growth hormone deficiency: effect of combination therapy with gonadotropin releasing hormone agonist and growth hormone. J. Pediatr. 1992; 120:709–715.CrossRefGoogle ScholarPubMed
Constine, L. S., Woolf, P. D., Cann, D.et al.Hypothalamic–pituitary dysfunction after radiation for brain tumors. N. Engl. J. Med. 1993; 328:87–94.CrossRefGoogle ScholarPubMed
Rappaport, R., Brauner, R., Czernichow, P.et al.Effect of hypothalamic and pituitary irradiation on pubertal development in children with cranial tumors. J. Clin. Endocrinol. Metab. 1982; 54:1164–1168.CrossRefGoogle ScholarPubMed
Livesey, E. A. & Brook, C. G.Thyroid dysfunction after radiotherapy and chemotherapy of brain tumours. Arch. Dis. Child. 1989; 64:593–595.CrossRefGoogle ScholarPubMed
Oberfield, S. E. & Allen, J. et al. Thyroid and gonadal function and growth of long-term survivors of medulloblastoma/PNET. In Green, D. M. & D'Angio, G. J. (eds). Late Effects of Treatment for Childhood Cancer. New York: Wiley-Liss, 1992; 55–62.Google Scholar
Oberfield, S. E., Nirenberg, A., Allen, J. C.et al.Hypothalamic–pituitary–adrenal function following cranial irradiation. Horm. Res. 1997; 47:9–16.CrossRefGoogle ScholarPubMed
Kaplan, M. M., Garnick, M. B., Gelber, R.et al.Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am. J. Med. 1983; 74:272–280.CrossRefGoogle ScholarPubMed
Devney, R. B., Sklar, C. A., Nesbit, M. E. Jr.et al.Serial thyroid function measurements in children with Hodgkin disease. J. Pediatr. 1984; 105:223–227.CrossRefGoogle ScholarPubMed
Hancock, S. L., Cox, R. S., & McDougall, I. R.Thyroid diseases after treatment of Hodgkin's disease. N. Engl. J. Med. 1991; 325:599–605.CrossRefGoogle ScholarPubMed
Tucker, M. A., Jones, P. H., Boice, J. D. Jr.et al.Therapeutic radiation at a young age is linked to secondary thyroid cancer. The Late Effects Study Group. Cancer. Res. 1991; 51:2885–2888.Google Scholar
Haik, B. G., Jereb, B., Smith, M. E.et al.Radiation and chemotherapy of parameningeal rhabdomyosarcoma involving the orbit. Ophthalmology 1986; 93:1001–1009.CrossRefGoogle ScholarPubMed
Krebs, I. P., Krebs, W., Merriam, J. C.et al.Radiation retinopathy: electron microscopy of retina and optic nerve. Histol. Histopathol. 1992; 7:101–110.Google ScholarPubMed
Kielbassa, A. M., Attin, T., Schaller, H. G., & Hellwig, E.Endodontic therapy in a postirradiated child: review of the literature and report of a case. Quintessence Int. 1995; 26:405–411.Google Scholar
Simon, A. R. & Roberts, M. W.Management of oral complications associated with cancer therapy in pediatric patients. ASDC J. Dent. Child. 1991; 58:384–389.Google ScholarPubMed
Newton, W. A. Jr., Meadows, A. T., Shimada, H.et al.Bone sarcomas as second malignant neoplasms following childhood cancer. Cancer 1991; 67:193–201.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
DeRosa, G. P.Progressive scoliosis following chest wall resection in children. Spine 1985; 10:618–622.CrossRefGoogle ScholarPubMed
Grosfeld, J. L., Rescorla, F. J., West, K. W.et al.Chest wall resection and reconstruction for malignant conditions in childhood. J. Pediatr. Surg. 1988; 23:667–673.CrossRefGoogle ScholarPubMed
Agadir, M., Sevastik, B., Reinholt, F. P.et al.Vascular changes in the chest wall after unilateral resection of the intercostal nerves in the growing rabbit. J. Orthop. Res. 1990; 8:283–290.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×