Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T08:30:11.039Z Has data issue: false hasContentIssue false

11 - Activity and stellar properties

Published online by Cambridge University Press:  14 August 2009

C. J. Schrijver
Affiliation:
Stanford University, California
C. Zwaan
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Activity throughout the H–R diagram

This section provides an overview of the magnetic activity of single stars across the H–R diagram; see Fig. 11.1. Activity in binary stars is discussed in Chapter 14. The observational data are summarized and qualitatively interpreted in terms of the empirical activity–rotation relation and the evolution of the rotation rate. The quantitative analysis follows in Section 11.3 and in Chapter 13.

Plots of Ca II H+K flux density against color (see Figs. 2.17 and 9.3) display a broad distribution of emission fluxes. Young stars from open clusters, such as the Pleiades and Hyades, occupy the upper strip in such plots, that is, above the Vaughan–Preston gap (Section 9.3.3). Older main-sequence stars, such as the Sun, and many subgiants and giants are found in the lower part of such plots.

Dedicated studies proved that a convective envelope is a necessary but not a sufficient condition for significant magnetic activity. A convective envelope turned out to be a necessary condition, because indications for magnetic activity are exclusively found in stars with convective envelopes (Fig. 11.1), which corresponds to the domain of the H–R diagram to the right of the granulation boundary (see Fig. 2.10), including pre-main-sequence stars, such as the T Tauri stars (these objects are discussed in Section 11.6).

A convective envelope is not a sufficient condition for significant magnetic activity, however: magnetic activity is found to depend on the stellar rotation rate (the activity– rotation relation is discussed in quantitative detail in Section 11.3).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×