Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T21:20:06.340Z Has data issue: false hasContentIssue false

33 - High-throughput RNA interference

Published online by Cambridge University Press:  31 July 2009

Howard Y. Chang
Affiliation:
Departments of Biochemistry and Dermatology, Stanford University School of Medicine
Nancy N. Wang
Affiliation:
Departments of Biochemistry and Dermatology, Stanford University School of Medicine
Jen-Tsan Chi
Affiliation:
Departments of Biochemistry and Dermatology, Stanford University School of Medicine
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

RNA interference (RNAi) is an evolutionarily conserved pathway of gene silencing that identifies and destroys mRNA sequences derived from selfish repetitive or viral sequences. The mechanisms and physiologic functions of RNAi pathways are discussed in Section 1. Because RNAi can be triggered by exogenously supplied double-stranded RNA (dsRNA) molecules, in principle one can effectively silence the expression of a gene and infer its physiologic function given its sequence. RNAi analysis on a genome-wide scale is a versatile and powerful tool that holds great promise in functional annotation of the human genome and in acceleration of drug target discovery and validation. The rapid advances to date have illustrated that high-throughput RNAi can complement genetic studies in traditional model organisms to extend our understanding and probe the mechanisms of well-studied pathways. In this chapter, we will focus on emerging methodologies and issues surrounding high-throughput RNAi in mammalian systems, and highlight the potential advances and pitfalls with these new technologies.

Generation of genome-wide RNAi reagents

In order to silence each gene in the genome using RNAi, the first step is to create the appropriate library of dsRNA reagents. In Caenorhabditis elegans and Drosophila melanogaster, long segments of dsRNA are readily taken up by the animal or tissue culture cells, respectively, and genome-wide RNAi libraries can be constructed by annealing complementary RNAs synthesized from both strands of the same cDNA.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 470 - 479
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421, 268–272CrossRefGoogle ScholarPubMed
Aza-Blanc, P., Cooper, C. L., Wagner, K., Batalov, S., Deveraux, Q. L. and Cooke, M. P. (2003). Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Molecular Cell, 12, 627–637CrossRefGoogle ScholarPubMed
Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. and Iggo, R. (2003). Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genetics, 34, 263–264CrossRefGoogle ScholarPubMed
Brummelkamp, T. R., Bernards, R. and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553CrossRefGoogle ScholarPubMed
Chi, J. T., Chang, H. Y., Wang, N. N., Chang, D. S., Dunphy, N. and Brown, P. O. (2003). Genomewide view of gene silencing by small interfering RNAs. Proceedings of the National Academy of Sciences USA, 100, 6343–6346CrossRefGoogle ScholarPubMed
Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A. and Dixon, J. E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences USA, 97, 6499–6503CrossRefGoogle ScholarPubMed
Cram, E. J., Clark, S. G. and Schwarzbauer, J. E. (2003). Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. Journal of Cell Science, 116, 3871–3878CrossRefGoogle ScholarPubMed
Devroe, E. and Silver, P. A. (2002). Retrovirus-delivered siRNA. BMC Biotechnology, 2, 15CrossRefGoogle ScholarPubMed
Doench, J. G., Petersen, C. P. and Sharp, P. A. (2003). siRNAs can function as miRNAs. Genes & Development, 17, 438–442CrossRefGoogle ScholarPubMed
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330CrossRefGoogle ScholarPubMed
Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A. M., Martin, C., Ozlu, N., Bork, P. and Hyman, A. A. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331–336CrossRefGoogle Scholar
Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237CrossRefGoogle ScholarPubMed
Kamath, R. S., Martinezlarge-Campos, M., Zipperlen, P., Fraser, A. G. and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology, 2, RESEARCH0002Google ScholarPubMed
Kawasaki, H., Suyama, E., Iyo, M. and Taira, K. (2003). siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Reseach, 31, 981–987CrossRefGoogle ScholarPubMed
Kiger, A., Baum, B., Jones, S., Jones, M., Coulson, A., Echeverri, C. and Perrimon, N. (2003). A functional genomic analysis of cell morphology using RNA interference. Journal of Biology, 2, 27CrossRefGoogle ScholarPubMed
Kumar, R., Conklin, D. S. and Mittal, V. (2003). High-throughput selection of effective RNAi probes for gene silencing. Genome Research, 13, 2333–2340CrossRefGoogle ScholarPubMed
Lassus, P., Rodriguez, J. and Lazebnik, Y. (2002). Confirming specificity of RNAi in mammalian cells. Science STKE, 2002, PL13Google ScholarPubMed
Bot, N., Tsai, M. C., Andrews, R. K. and Ahringer, J. (2003). TAc-1, a regulator of microtubule length in the C. elegans embryo. Current Biology, 13, 1499–1505CrossRefGoogle ScholarPubMed
Lee, S. S., Lee, R. Y., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genetics, 33, 40–48CrossRefGoogle ScholarPubMed
Lum, L., Yao, S., Mozer, B., Rovescalli, A., Kessler, D., Nirenberg, M. and Beachy, P. A. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science, 299, 2039–2045CrossRefGoogle ScholarPubMed
Mousses, S., Caplen, N. J., Cornelison, R., Weaver, D., Basik, M., Hautaniemi, S., Elkahloun, A. G., Lotufo, R. A., Choudary, A., Dougherty, E. R., et al. (2003). RNAi microarray analysis in cultured mammalian cells. Genome Research, 13, 2341–2347CrossRefGoogle ScholarPubMed
Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., Li, H. and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424, 277–283CrossRefGoogle ScholarPubMed
Myers, J. W., Jones, J. T., Meyer, T. and Ferrell, J. E. Jr. (2003). Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nature Biotechnology, 21, 324–328CrossRefGoogle ScholarPubMed
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. and Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16, 948–958CrossRefGoogle ScholarPubMed
Pothof, J., Haaften, G., Thijssen, K., Kamath, R. S., Fraser, A. G., Ahringer, J., Plasterk, R. H. and Tijsterman, M. (2003). Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes & Development, 17, 443–448CrossRefGoogle Scholar
Qin, X. F., An, D. S., Chen, I. S. and Baltimore, D. (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceedings of the National Academy of Sciences USA, 100, 183–188CrossRefGoogle Scholar
Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. and Ezekowitz, R. A. (2002). Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature, 416, 644–648CrossRefGoogle ScholarPubMed
Rogers, S. L., Wiedemann, U., Stuurman, N. and Vale, R. D. (2003). Molecular requirements for actin-based lamella formation in Drosophila S2 cells. Journal of Cell Biology, 162, 1079–1088CrossRefGoogle ScholarPubMed
Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Ihrig, M. M., McManus, M. T., Gertler, F. B., Scott, M. L. and Parijs, L. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33, 401–406CrossRefGoogle ScholarPubMed
Saxena, S., Jonsson, Z. O. and Dutta, A. (2003). Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. Journal of Biological Chemistry, 278, 44312–44319CrossRefGoogle ScholarPubMed
Schwarz, D. S., Hütvagner, G., Haley, B. and Zamore, P. D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell, 10, 537–548CrossRefGoogle Scholar
Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D. N. and Fesik, S. W. (2003). Specificity of short interfering RNA determined through gene expression signatures. Proceedings of the National Academy of Sciences USA, 100, 6347–6352CrossRefGoogle ScholarPubMed
Shinagawa, T. and Ishii, S. (2003). Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes & Development, 17, 1340–1345CrossRefGoogle ScholarPubMed
Simmer, F., Moorman, C., Linden, A. M., Kuijk, E., Berghe, P. V., Kamath, R., Fraser, A. G., Ahringer, J. and Plasterk, R. H. (2003). genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. Public Library of Science Biology, 1, E12Google ScholarPubMed
Timmons, L. and Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395, 854CrossRefGoogle ScholarPubMed
Vastenhouw, N. L., Fischer, S. E., Robert, V. J., Thijssen, K. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Plasterk, R. H. (2003). A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Current Biology, 13, 1311–1316CrossRefGoogle ScholarPubMed
Yang, D., Buchholz, F., Huang, Z., Goga, A., Chen, C. Y., Brodsky, F. M. and Bishop, J. M. (2002). Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proceedings of the National Academy of Sciences USA, 99, 9942–9947CrossRefGoogle ScholarPubMed
Ziauddin, J. and Sabatini, D. M. (2001). Microarrays of cells expressing defined cDNAs. Nature, 411, 107–110CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×