Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T10:31:25.682Z Has data issue: false hasContentIssue false

1 - Congruent Domains in the Euclidean Plane

from Part 1 - Arrangements in Dimension Two

Published online by Cambridge University Press:  12 September 2009

Károly Böröczky, Jr
Affiliation:
Hungarian Academy of Sciences, Budapest
Get access

Summary

Let K be a convex domain. According to the classical result of L. Fejes Tóth [FTL1950], the density of a packing of congruent copies of K in a hexagon cannot be denser than the density of K inside the circumscribed hexagon with minimal area. Besides this statement, we verify that the same density estimate holds for any convex container provided the number of copies is high enough. In addition, we show that if K is a centrally symmetric domain then the inradius and circumradius of the optimal convex container cannot be too different. Following L. Fejes Tóth [FTL1950] in case of coverings, the analogous density estimate is verified under the “noncrossing” assumption, which essentially says that the boundaries of any two congruent copies intersect in two points. In case of both packings and coverings, congruent copies can be replaced by similar copies of not too different sizes. Finally, we verify the hexagon bound for coverings by congruent fat ellipses even without the noncrossing assumption, a result due to A. Heppes.

Concerning the perimeter, we show that the convex domain of minimal perimeter containing n nonoverlapping congruent copies of K gets arbitrarily close to being a circular disc for large n. However, if the perimeter of the compact convex set D covered by n congruent copies of K is maximal then D is close to being a segment for large n.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×