Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T15:39:40.575Z Has data issue: false hasContentIssue false

10 - Magnetic resonance spectroscopic imaging and other emerging magnetic resonance techniques in prostate cancer

Published online by Cambridge University Press:  23 December 2009

Hedvig Hricak
Affiliation:
Memorial Sloan-Kettering Cancer Center
Peter Scardino
Affiliation:
Memorial Sloan-Kettering Cancer Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Prostate Cancer , pp. 158 - 176
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cornel, E. B., Smits, G. A., Oosterhof, G. O., et al., Characterization of human prostate cancer, benign prostatic hyperplasia and normal prostate by in vitro 1H and 31P magnetic resonance spectroscopy. J Urol, 150 (1993), 2019–24.CrossRefGoogle ScholarPubMed
Fowler, A. H., Pappas, A. A., Holder, J. C., et al., Differentiation of human prostate cancer from benign hypertrophy by in vitro 1H NMR. Magn Reson Med, 25 (1992), 140–7.CrossRefGoogle ScholarPubMed
Kurhanewicz, J., Dahiya, R., Macdonald, J. M., et al., Citrate alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic resonance spectroscopy and biochemical study. Magn Reson Med, 29 (1993), 149–57.CrossRefGoogle ScholarPubMed
Cheng, L. L., Wu, C., Smith, M. R., et al., Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett, 494 (2001), 112–16.CrossRefGoogle ScholarPubMed
Swanson, M. G., Vigneron, D. B., Tabatabai, Z. L., et al., Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med, 50 (2003), 944–54.CrossRefGoogle ScholarPubMed
Graaf, M., Schipper, R. G., Oosterhof, G. O., et al., Proton MR spectroscopy of prostatic tissue focused on the detection of spermine, a possible biomarker of malignant behavior in prostate cancer. Magma, 10 (2000), 153–9.Google ScholarPubMed
Narayan, P., Jajodia, P., Kurhanewicz, J., et al., Characterization of prostate cancer, benign prostatic hyperplasia and normal prostates using transrectal 31phosphorus magnetic resonance spectroscopy: a preliminary report. J Urol, 146 (1991), 66–74.CrossRefGoogle ScholarPubMed
Swanson, M. G., Zektzer, A. S., Tabatabai, Z. L., et al., Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med, 55 (2006), 1257–64.CrossRefGoogle ScholarPubMed
Dewhirst, M. W., Sostman, H. D., Leopold, K. A., et al., Soft-tissue sarcomas: MR imaging and MR spectroscopy for prognosis and therapy monitoring. Work in progress. Radiology, 174 (1990), 847–53.CrossRefGoogle Scholar
Fulham, M. J., Bizzi, A., Dietz, M. J., et al., Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology, 185 (1992), 675–86.CrossRefGoogle ScholarPubMed
Heesters, M. A., Kamman, R. L., Mooyaart, E. L., et al., Localized proton spectroscopy of inoperable brain gliomas: response to radiation therapy. J Neurooncol, 17 (1993), 27–35.CrossRefGoogle ScholarPubMed
Koutcher, J. A., Ballon, D., Graham, M., et al., P-31 NMR spectra of extremity sarcoma: diversity of metabolic profiles and changes in response to chemotherapy. Magn Reson Med, 16 (1990), 19–34.CrossRefGoogle Scholar
McBride, D. Q., Miller, B. L., Nikas, D. L., et al., Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol, 44 (1995), 137–44.CrossRefGoogle ScholarPubMed
Rutter, A., Hugenholtz, H., Saunders, J. K., et al., One-dimensional phosphorus-31 chemical shift imaging of human brain tumors. Invest Radiol, 30 (1995), 359–66.CrossRefGoogle ScholarPubMed
Sijens, P. E., Knopp, M. V., Brunetti, A., et al., 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med, 33 (1995), 818–26.CrossRefGoogle ScholarPubMed
Smith, T. A., Eccles, S., Ormerod, M. G., et al., The phosphocholine and glycerophosphocholine content of an oestrogen-sensitive rat mammary tumour correlates strongly with growth rate. Br J Cancer, 64 (1991), 821–6.CrossRefGoogle ScholarPubMed
Aboagye, E. O., Bhujwalla, Z. M., Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res, 59 (1999), 80–4.Google ScholarPubMed
Kurhanewicz, J., Vigneron, D. B., Hricak, H., et al., Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology, 198 (1996), 795–805.CrossRefGoogle ScholarPubMed
Schnall, M. D., Lenkinski, B., Milestone, B., et al., Localized 1H spectroscopy of the human prostate in vivo; Presented at SMRM Ninth Annual Scientific Meeting; New York, NY, USA (1990), p. 288.
Frahm, J., Bruhn, H., Gyngell, M. L., et al., Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med, 9 (1989), 79–93.CrossRefGoogle ScholarPubMed
Bottomley, P., Selective volume method for performing localized NMR spectroscopy. US Patent (1984), 4 480 228.
Kurhanewicz, J., Vigneron, D. B., Nelson, S. J., et al., Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology, 45 (1995), 459–66.CrossRefGoogle Scholar
Schick, F., Bongers, H., Kurz, S., et al., Localized proton MR spectroscopy of citrate in vitro and of the human prostate in vivo at 1.5 T. Magn Reson Med, 29 (1993), 38–43.CrossRefGoogle ScholarPubMed
Brown, T. R., Kincaid, B. M., Ugurbil, K., NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA, 79 (1982), 3523–6.CrossRefGoogle ScholarPubMed
Heerschap, A., Jager, G. J., Graaf, M., et al., Proton MR spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med, 37 (1997), 204–13.CrossRefGoogle Scholar
Bydder, G. M., Pennock, J. M., Steiner, R. E., et al., The short TI inversion recovery sequence – an approach to MR imaging of the abdomen. Magn Reson Imaging, 3 (1985), 251–4.CrossRefGoogle ScholarPubMed
Haase, A., Frahm, J., Hanicke, W., et al., 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol, 30 (1985), 341–4.CrossRefGoogle ScholarPubMed
Star-Lack, J., Nelson, S. J., Kurhanewicz, J., et al., Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med, 38 (1997), 311–21.CrossRefGoogle Scholar
Males, R. G., Vigneron, D. B., Star-Lack, J., et al., Clinical application of BASING and spectral/spatial water and lipid suppression pulses for prostate cancer staging and localization by in vivo 3D 1H magnetic resonance spectroscopic imaging. Magn Reson Med, 43 (2000), 17–22.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Schricker, A. A., Pauly, J. M., Kurhanewicz, J., et al., Dualband spectral-spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med, 46 (2001), 1079–87.CrossRefGoogle ScholarPubMed
Tran, T. K., Vigneron, D. B., Sailasuta, N., et al., Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med, 43 (2000), 23–33.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Scheenen, T. W., Klomp, D. W., Roll, S. A., et al., Fast acquisition-weighted three-dimensional proton MR spectroscopic imaging of the human prostate. Magn Reson Med, 52 (2004), 80–8.CrossRefGoogle ScholarPubMed
Chen, A. P., Cunningham, C. H., Kurhanewicz, J., et al., High-resolution 3D MR spectroscopic imaging of the prostate at 3 T with the MLEV-PRESS sequence. Magn Reson Imaging, 24 (2006), 825–32.CrossRefGoogle Scholar
Chen, A. P., Cunningham, C. H., Ozturk-Isik, E., et al., High-speed 3T MR spectroscopic imaging of prostate with flyback echo-planar encoding. J Magn Reson Imaging, 25 (2007), 1288–92.CrossRefGoogle ScholarPubMed
Jung, J. A., Coakley, F. V., Vigneron, D. B., et al., Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology, 233 (2004), 701–8.CrossRefGoogle ScholarPubMed
Shukla-Dave, A., Hricak, H., Moskowitz, C., et al., Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology, 245 (2007), 499–506.CrossRefGoogle ScholarPubMed
Akin, O., Sala, E., Moskowitz, C. S., et al., Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology, 239 (2006), 784–92.CrossRefGoogle ScholarPubMed
Zakian, K. L., Eberhardt, S., Hricak, H., et al., Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging – initial results. Radiology, 229 (2003), 241–7.CrossRefGoogle ScholarPubMed
Futterer, J. J., Scheenen, T. W., Heijmink, S. W., et al., Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate. Invest Radiol, 42 (2007), 116–22.CrossRefGoogle ScholarPubMed
Breiman, L., Friedman, J., Olshen, R., et al., Classification and Regression Trees. Belmont, CA: Wadsworth, 1984.Google Scholar
Carroll, P. R., Coakley, F. V., Kurhanewicz, J., Magnetic resonance imaging and spectroscopy of prostate cancer. Rev Urol, 8: Suppl 1 (2006), S4–S10.Google ScholarPubMed
Futterer, J. J., Heijmink, S. W., Scheenen, T. W., et al., Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology, 241 (2006), 449–58.CrossRefGoogle ScholarPubMed
Hricak, H., New horizons in genitourinary oncologic imaging. Abdom Imaging, 31 (2006), 182–7.CrossRefGoogle ScholarPubMed
Hricak, H., Choyke, P. L., Eberhardt, S. C., et al., Imaging prostate cancer: a multidisciplinary perspective. Radiology, 243 (2007), 28–53.CrossRefGoogle ScholarPubMed
Seltzer, S. E., Getty, D. J., Tempany, C. M., et al., Staging prostate cancer with MR imaging: a combined radiologist-computer system. Radiology, 202 (1997), 219–26.CrossRefGoogle ScholarPubMed
Kurhanewicz, J., Vigneron, D. B., Males, R. G., et al., The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am. 38 (2000), 115–38.CrossRefGoogle ScholarPubMed
Zakian, K. L., Sircar, K., Hricak, H., et al., Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology, 234 (2005), 804–14.CrossRefGoogle ScholarPubMed
Yu, K. K., Scheidler, J., Hricak, H., et al., Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology, 213 (1999), 481–8.CrossRefGoogle ScholarPubMed
Shukla-Dave, A., Hricak, H., Kattan, M. W., et al., The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int, 99 (2007), 786–93.CrossRefGoogle ScholarPubMed
Coakley, F. V., Teh, H. S., Qayyum, A., et al., Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology, 233 (2004), 441–8.CrossRefGoogle Scholar
Pickett, B., Kurhanewicz, J., Coakley, F., et al., Use of MRI and spectroscopy in evaluation of external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys, 60 (2004), 1047–55.CrossRefGoogle ScholarPubMed
Pucar, D., Shukla-Dave, A., Hricak, H., et al., Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy – initial experience. Radiology, 236 (2005), 545–53.CrossRefGoogle Scholar
Pickett, B., Haken, R. K. Ten, Kurhanewicz, J., et al., Time to metabolic atrophy after permanent prostate seed implantation based on magnetic resonance spectroscopic imaging. Int J Radiat Oncol Biol Phys, 59 (2004), 665–73.CrossRefGoogle ScholarPubMed
Pickett, B., Kurhanewicz, J., Pouliot, J., et al., Three-dimensional conformal external beam radiotherapy compared with permanent prostate implantation in low-risk prostate cancer based on endorectal magnetic resonance spectroscopy imaging and prostate-specific antigen level. Int J Radiat Oncol Biol Phys, 65 (2006), 65–72.CrossRefGoogle ScholarPubMed
Pucar, D., Koutcher, J. A., Shah, A., et al., Preliminary assessment of magnetic resonance spectroscopic imaging in predicting treatment outcome in patients with prostate cancer at high risk for relapse. Clin Prostate Cancer, 3 (2004), 174–81.CrossRefGoogle ScholarPubMed
Geijer, B., Holtas, S., Diffusion-weighted imaging of brain metastases: their potential to be misinterpreted as focal ischaemic lesions. Neuroradiology, 44 (2002), 568–73.CrossRefGoogle ScholarPubMed
Gibbs, P., Pickles, M. D., Turnbull, L. W., Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol, 41 (2006), 185–8.CrossRefGoogle ScholarPubMed
Hosseinzadeh, K., Schwarz, S. D., Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging, 20 (2004), 654–61.CrossRefGoogle ScholarPubMed
Issa, B., In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging, 16 (2002), 196–200.CrossRefGoogle ScholarPubMed
Sato, C., Naganawa, S., Nakamura, T., et al., Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging, 21 (2005), 258–62.CrossRefGoogle ScholarPubMed
Shimofusa, R., Fujimoto, H., Akamata, H., et al., Diffusion-weighted imaging of prostate cancer. J Comput Assist Tomogr, 29 (2005), 149–53.CrossRefGoogle ScholarPubMed
Pruessmann, K. P., Weiger, M., Scheidegger, M. B., et al., SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 42 (1999), 952–62.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sodickson, D. K., Griswold, M. A., Jakob, P. M., SMASH imaging. Magn Reson Imaging Clin N Am, 7:2 (1999), 237–54, vii–viii.Google ScholarPubMed
Futterer, J. J., Heijmink, S. W., Scheenen, T. W., et al., Prostate cancer: local staging at 3-T endorectal MR imaging – early experience. Radiology, 238 (2006), 184–91.CrossRefGoogle ScholarPubMed
Padhani, A. R., Gapinski, C. J., Macvicar, D. A., et al., Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol, 55 (2000), 99–109.CrossRefGoogle Scholar
Buckley, D. L., Roberts, C., Parker, G. J., et al., Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging – initial experience. Radiology 233 (2004), 709–15.CrossRefGoogle ScholarPubMed
Noworolski, S. M., Henry, R. G., Vigneron, D. B., et al., Dynamic contrast-enhanced MRI in normal and abnormal prostate tissues as defined by biopsy, MRI, and 3D MRSI. Magn Reson Med, 53 (2005), 249–55.CrossRefGoogle ScholarPubMed
Padhani, A. R., MacVicar, A. D., Gapinski, C. J., et al., Effects of androgen deprivation on prostatic morphology and vascular permeability evaluated with MR imaging. Radiology, 218 (2001), 365–74.CrossRefGoogle ScholarPubMed
Scheenen, T. W., Heijmink, S. W., Roell, S. A., et al., Three-dimensional proton MR spectroscopy of human prostate at 3 T without endorectal coil: feasibility. Radiology, 245 (2007), 507–16.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×