Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T05:18:30.488Z Has data issue: false hasContentIssue false

6 - Newtonian attractions of extended bodies

Published online by Cambridge University Press:  10 October 2009

Y. T. Chen
Affiliation:
Universiti Malaya
Alan Cook
Affiliation:
Selwyn College, Cambridge
Get access

Summary

Introduction

In tests of the weak principle of equivalence, exact calculations of the attractions of masses are not necessary, but they are essential in experiments to test the inverse square law and to measure the gravitational constant. In fact, the calculation of the gravitational attraction of laboratory masses is usually not at all simple, because the dimensions of the masses are comparable with the separations between them, so that neither the test mass nor the attracting mass can be treated as a point object. In the following sections we discuss the gravitational attractions of laboratory masses with various common geometrical shapes. We present the results in terms of the gravitational efficiency, that is, the ratio of the gravitational attraction of a laboratory mass at a certain separation to that of a point mass with the same mass and separation. Furthermore, the precision demanded in measurements of separations of masses, the most difficult measurements in the determination of G and the test of gravitational law, depends on the geometry of the masses. These effects can have a strong influence on the conduct and final results of an experiment and it is essential to discuss in detail the calculation of potentials and attractions before going on to describe experiments.

Masses of three forms are often used in the laboratory: spheres, cylinders and rectangular prisms. The formula for the gravitational attraction of a sphere is well known and simple, but in practice it is not possible to manufacture an ideal sphere, the practical problem is usually how the real precision of manufacture affects the results; cylinders and prisms can be made very precisely but calculating the attraction is difficult.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×