Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T13:16:50.024Z Has data issue: false hasContentIssue false

22 - Luminescence quenching as a probe of particle distribution

Published online by Cambridge University Press:  18 December 2009

Vladimir Privman
Affiliation:
Clarkson University, New York
Get access

Summary

When the metal complex [Ru(phen)2(dppz)]2+ is bound to DNA it can luminesce. If the metal complex [Rh(phi)2(phen)]3+ is nearby on the strand, the luminescence is quenched by electron transfer. By varying concentrations and by varying the DNA it is possible to probe the distribution of complexes in this one-dimensional (1D) system, and to gather information about the electron transfer length and interparticle forces. Our model assumes random deposition with allowance for interactions among the complexes. Long strands of calf thymus (CT) DNA and short strands of a synthetic 28-mer were used in the experiments and, for fixed [Ru(phen)2(dppz)]2+ concentration, quenching was measured as a function of [Rh(phi)2(phen)]3+ concentration. In previous work, to be cited later, we reported an electron transfer length based on the CT-DNA data. However, the short-strand (28-mer) experiments show a remarkable difference from the previously analyzed data. In particular, the electron-transfer quenching upon irradiation is enhanced by a factor of approximately four. This requires the consideration of new physical effects on the short strands. Our proposal is to introduce complexcomplex repulsion as an additional feature. This allows a reasonable fit within the context of the random-deposition model, although it does not take into account changes in the structure of the 28-mer introduced by the metal complexes during the loading process.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×