Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T13:36:59.182Z Has data issue: false hasContentIssue false

2 - The Statement of the Incompleteness Theorem

Published online by Cambridge University Press:  16 October 2009

N. Shankar
Affiliation:
SRI International, USA
Get access

Summary

It is well known that the development of mathematics in the direction of greater precision has led to the formalization of xtensive mathematical domains, in the sense that proofs can be carried out according to a few mechanical rules.

Kurt Gödel [Göd67b]

Thus began Gödel's 1931 paper [Göd67b] in which he demonstrated the existence of formally undecidable sentences in a wide class of formal systems. The first part of this book describes a formalization and proof of this theorem that was carried out according to a “few mechanical rules.” The proof here is not a direct mechanization of any particular previously published version of the incompleteness proof. The statement of the theorem differs from Gödel's original statement which involved the notion of w-consistency. The statement here only involves the weaker notion of consistency and this form of the theorem was first proved by Rosser [Ros36]. The theorem we establish asserts the incompleteness of cohen's Z2 [Coh66]. The first-order logic of Z2 is taken from that of Shoenfield [Sho67]. Various metatheorems about Z2 are formalized and proved using the Boyer–Moore theorem prover.

This chapter presents a complete description of the formal statement of the incompleteness theorem. The main part of this description is the definition of the metatheory of Z2 in terms of a Lisp representation for the formulas and proofs of Z2, and a Lisp predicate that checks the validity of Z2 proofs represented in this manner. The representation of the symbols (variables, functions, predicates) and expressions (terms, atomic formulas, negation, disjunction, quantification) is first described. Various operations are defined for checking the well-formedness of expressions along with the important operation of substitution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×