Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-29T14:20:59.075Z Has data issue: false hasContentIssue false

19 - Quantum Regge calculus

from Part IV - Discrete Quantum Gravity

Published online by Cambridge University Press:  26 October 2009

Daniele Oriti
Affiliation:
Universiteit Utrecht, The Netherlands
Get access

Summary

Introduction

When Regge formulated the first discrete version of general relativity in 1961, one of his motivations was to set up a numerical scheme for solving Einstein's equations for general systems without a large amount of symmetry. The hope was that the formulation would also provide ways of representing complicated topologies and of visualising the resulting geometries. Regge calculus, as it has come to be known, has not only been used in large scale numerical calculations in classical general relativity but has also provided a basis for attempts at formulating a theory of Quantum Gravity.

The central idea in Regge calculus is to consider spaces with curvature concentrated on codimension-two subspaces, rather than with continuously distributed curvature. This is achieved by constructing spaces from flat blocks glued together on matching faces. The standard example in two dimensions is a geodesic dome, where a network of flat triangles approximates part of a sphere. The curvature resides at the vertices, and the deficit angle, given by 2π minus the sum of the vertex angles of the triangles at that point, gives a measure of it. In general dimension n, flat n-simplices meet on flat (n − 1)-dimensional faces and the curvature is concentrated on the (n − 2)-dimensional subsimplices or hinges. The deficit angle at a hinge is given by 2π minus the sum of the dihedral angles of the simplices meeting at that hinge.

Type
Chapter
Information
Approaches to Quantum Gravity
Toward a New Understanding of Space, Time and Matter
, pp. 360 - 377
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×