Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T12:01:08.194Z Has data issue: false hasContentIssue false

8 - Lightning warning

Published online by Cambridge University Press:  17 November 2009

Martin A. Uman
Affiliation:
University of Florida
Get access

Summary

Overview

In the previous chapter we discussed the effects of lightning on humans and animals, and we considered those situations and activities that are safe and those that are unsafe in a thunderstorm. In Section 7.1 we noted that in any outdoor group activity, like the positioning and movement of the spectators at a professional golf tournament, one individual should be designated as the responsible “weather person,” the primary person in charge of keeping track of the potential for lightning or other dangerous weather and of specifying when to get out of harm's way, using a plan that is already in place and tested. Only if one knows there is danger can appropriate action be taken to try to assure safety.

There are many situations in which it is not obvious that thunderstorms are approaching; for example, when the view of the storm and its lightning is obstructed or when nearby noise drowns out the sound of thunder. Nevertheless, the first line of defense in lightning warning is generally the visual observation of an approaching storm and the use of “flash to bang” thunder-ranging, that is, counting the time delay between seeing the light from the lightning and hearing its thunder. The time difference is about 5 seconds for each mile (about 3 seconds for each kilometer) of distance between the lightning and the observer, since sound travels about 1/5 mile (about 1/3 kilometer) per second while the light from a flash reaches the observer in a very small fraction of a second, that is, virtually instantaneously since light travels at 186 000 miles per second (300 000 kilometers per second).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boccippio, D. J., Koshak, W., Blakeslee, R.et al. 2000. The Optical Transient Detector (OTD): instrument characteristics and cross-sensor validation. J. Atmos. Ocean. Technol. 17: 441–458.2.0.CO;2>CrossRefGoogle Scholar
Boccippio, D. J., Heckman, S. and Goodman, S. J. 2001. A diagnostic analysis of the Kennedy Space Center LDAR network: 1. Data characteristics. J. Geophys. Res. 106: 4769–4786.CrossRefGoogle Scholar
Christian, H. J. and Latham, J. 1998. Satellite measurements of global lightning. Q. J. Roy. Meteorol. Soc. 124: 1771–1773.CrossRefGoogle Scholar
Christian, H. J., Blakeslee, R. J. and Goodman, S. J. 1989. The detection of lightning from geostationary orbit. J. Geophys. Res. 94: 13329–13337.CrossRefGoogle Scholar
Christian, H. J., Blakeslee, R. J. and Goodman, S. J. 1992. Lightning Imaging Sensor for the Earth Observing System. NASA Tech. Memorandum 4350.
Christian, H. J., Driscoll, K. T., Goodman, S. J. et al. 1996. The Optical Transient Detector (OTD). In Proc. 10th Int. Conf. Atmospheric Electricity, Osaka, Japan, pp. 368–371.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J.et al. 2003. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res. 108: 4005, doi:10.1029/2002JD002347.CrossRefGoogle Scholar
Cummins, K. L., Murphy, M. J., Bardo, E. A.et al. 1998. A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. 103: 9035–9044.CrossRefGoogle Scholar
Davis, M. H., Brook, M., Christian, H.et al. 1983. Some scientific objectives of a satellite-borne lightning mapper. Bull. Am. Meteorol. Soc. 64: 114–119.2.0.CO;2>CrossRefGoogle Scholar
Gratz, J. and Noble, E. 2006. Lightning safety and large stadiums. Bull. Am. Meteorol. Soc. 87, No.9, 1187–1194.Google Scholar
Hiscox, W. L., Krider, E. P., Pifer, A. E., and Uman, M. A. 1984. A systematic method for identifying and correcting “site errors” in a network of magnetic direction finders. Preprint, Proc. Int. Aerospace and Ground Conf. Lightning and Static Electricity, Orlando, Florida, pp. 7-1–7-5, National Interagency Coordination Group.
Jacobson, E. A. and Krider, E. P. 1976. Electrostatic field changes produced by Florida lightning, J. Atmos. Sci. 33: 113–117.2.0.CO;2>CrossRefGoogle Scholar
Jacobson, A. R., Knox, S. O., Franz, R. and Enemark, D. C. 1999. FORTE observations of lightning radio-frequency signatures: capabilities and basic results. Radio Sci. 34: 337–354.CrossRefGoogle Scholar
Jacobson, A. R., Cummins, K. L., Carter, M.et al. 2000. FORTE radio-frequency observations of lightning strokes detected by the National Lightning Detection Network. J. Geophys. Res. 105: 15653–15662.CrossRefGoogle Scholar
Jacobson, A. R., Holzworth, R.Harlin, J., Dowden, R. and Lay, E. 2006. Performance assessment of the world wide lightning location network (WWLLN), using the Los Alamos sferic array (LASA) as ground truth. J. Atmos. Ocean. Technol. 23:1082–1092.CrossRefGoogle Scholar
Jerauld, J., Rakov, V. A.Uman, M. A., Rambo, K. J. and Jordan, D. M. 2005. An evaluation of the performance characteristics of the U.S. national lightning detection network in Florida using rocket-triggered lightning. J. Geophys. Res. 110, D19106, doi:10.1029/2005JD005924.CrossRefGoogle Scholar
Kidder, R. E. 1973. The location of lightning flashes at ranges less than 100 km. J. Atmos. Terr. Phys. 35: 283–290.CrossRefGoogle Scholar
Koshak, W. J., Solakiewicz, R. J., Blakeslee, R. J.et al. 2004. North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Ocean. Technol. 21: 543–558.2.0.CO;2>CrossRefGoogle Scholar
Kotaki, M. and Katoh, C. 1983. The global distribution of thunderstorm activity observed by the ionospheric sounding satellite (ISS-B). J. Atmos. Terr. Phys. 45: 833–847.Google Scholar
Kotaki, M., Kuriki, I., Katoh, C. and Sugiuchi, H. 1981a. Global distribution of thunderstorm activity observed with ISS-b. J. Radio Res. Lab. Tokyo 28: 49–71.Google Scholar
Kotaki, M., Sugiuchi, H. and Katoh, C. 1981b. World Distribution of Thunderstorm Activity Obtained from Ionosphere Sounding Satellite-b Observations June 1978 to May 1980. Japan: Radio Research Laboratories, Ministry of Posts and Telecommunications.Google Scholar
Krider, E. P., Noggle, R. C. and Uman, M. A. 1976. A gated wideband magnetic direction finder for lightning return strokes. J. Appl. Meteorol. 15: 301–306.2.0.CO;2>CrossRefGoogle Scholar
Krider, E. P., Noggle, R. C., Pifer, A. E. and Vance, D. L. 1980. Lightning direction-finding systems for forest fire detection. Bull. Am. Meteorol. Soc. 61: 980–986.2.0.CO;2>CrossRefGoogle Scholar
Lee, A. C. L. 1986a. An experimental study of the remote location of lightning flashes using a VLF arrival time difference technique. Q. J. Roy. Meteorol. Soc. 112: 203–229.CrossRefGoogle Scholar
Lee, A. C. L. 1986b. An operational system for the remote location of lightning flashes using a VLF arrival time difference technique. J. Atmos. Ocean. Technol. 3: 630–642.2.0.CO;2>CrossRefGoogle Scholar
Lee, A. C. L. 1989a. The limiting accuracy of long wavelength lightning flash location. J. Atmos. Ocean. Technol. 6: 43–49.2.0.CO;2>CrossRefGoogle Scholar
Lee, A. C. L. 1989b. Ground truth confirmation and theoretical limits of an experimental VLF arrival time difference lightning flash locating system. Q. J. Roy. Meteorol. Soc. 115: 1146–1166.CrossRefGoogle Scholar
Lee, A. C. L. 1990. Bias elimination and scatter in lightning location by the VLF arrival time difference technique. J. Atmos. Ocean. Technol. 7: 719–733.2.0.CO;2>CrossRefGoogle Scholar
Lewis, E. A., Harvey, R. B. and Rasmussen, J. E. 1960. Hyperbolic direction finding with sferics of transatlantic origin. J. Geophys. Res. 65: 1879–1905.CrossRefGoogle Scholar
Lyons, W. A., Moon, D. A., Schuh, J. A., Pettit, N. J. and Eastman, J. R. 1989. The design and operation of a national lightning detection network using time-of-arrival technology. In Proc. 1989 Int. Conf. Lightning and Static Electricity, Bath, England, pp. 2B.2.1–8.
Malan, D. J. 1963. Physics of Lightning. London: The English Universities Press Ltd.Google Scholar
Nishino, M., Iwai, A. and Kashiwagi, M. 1973. Location of the sources of atmospherics in and around Japan. In Proc. Res. Inst. Atmospherics, Nagoya Univ. Japan 20: 9–21.Google Scholar
Proctor, D. E. 1971. A hyperbolic system for obtaining VHF radio pictures of lightning. J. Geophys. Res. 76: 1478–1489.CrossRefGoogle Scholar
Proctor, D. E. 1981. VHF radio pictures of cloud flashes. J. Geophys. Res. 86: 4041–4071.CrossRefGoogle Scholar
Proctor, D. E., Uytenbogaardt, R. and Meredith, B. M. 1988. VHF radio pictures of lightning flashes to ground. J. Geophys. Res. 93: 12683–12727.CrossRefGoogle Scholar
Rison, W., Thomas, R. J., Krehbiel, P. R., Hamlin, T. and Harlin, J. 1999. A GPS-based three-dimensional lightning mapping system: initial observations in central New Mexico. Geophys. Res. Lett. 26: 3573–3576.CrossRefGoogle Scholar
Rodger, C. J., Brundell, J. B., Dowden, R. L. and Thomson, N. R. 2004. Location accuracy of long distance VLF lightning location network. Ann. Geophys. 22: 747–758.CrossRefGoogle Scholar
Rodger, C. J., Brundell, J. B., Dowden, R. L. and Thomson, N. R. 2005. Location accuracy of VLF World Wide Lightning Location (WWLL) network: post-algorithm upgrade. Ann. Geophys. 23: 277–290.CrossRefGoogle Scholar
Shao, X.-M., Stanley, M., Regan, A.et al. 2006. Total lightning observations with the new and improved Los Alamos sferic array (LASA). J. Atmos. Ocean. Technol. 23: 1273–1288.CrossRefGoogle Scholar
Suszcynsky, D. M., Kirkland, M. W., Jacobson, A. R.et al. 2000. FORTE observations of simultaneous VHF and optical emissions from lightning: basic phenomenology. J. Geophys. Res. 105: 2191–2201.CrossRefGoogle Scholar
Thomas, R. J., Krehbiel, P. R., Rison, W.et al. 2004. Accuracy of the lightning mapping array. J. Geophys. Res. 109, D14207, doi:10.1029/2004JD004549.CrossRefGoogle Scholar
Watson-Watt, R. A. and Herd, J. F. 1926. An instantaneous direct-reading radio goniometer. J. Inst. Electr. Eng. 64: 611–622.Google Scholar
World Meteorological Organization (WMO). 1955. Technical Note 12, Atmospheric Techniques. Geneva: Secretariat of the World Meteorological Organization.
Zuelsdorf, R. S., Strangeway, R. J., Russel, C. T.et al. 1997. Trans-ionospheric pulse pairs (TIPPs): their geographic distribution and seasonal variations. Geophys. Res. Lett. 24: 3165–3168.CrossRefGoogle Scholar
Zuelsdorf, R. S., Casler, C., Strangeway, R. J. and Russel, C. T. 1998a. Ground detection of trans-ionospheric pulse pairs by stations in the National Lightning Detection Network. Geophys. Res. Lett. 25: 481–484.CrossRefGoogle Scholar
Zuelsdorf, R. S., Strangeway, R. J., Russell, C. T. and Franz, R. 1998b. Trans-ionospheric pulse pairs (TIPPs): their occurrence rates and diurnal variation. Geophys. Res. Lett. 25: 3709–3712.CrossRefGoogle Scholar
Zuelsdorf, R. S., Franz, R. C., Strangeway, R. J. and Russell, C. T. 2000. Determining the source of strong LF/VLF TIPP events: implications for association with NPBPs and NNBPs. J. Geophys. Res. 105: 20725–20736.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Lightning warning
  • Martin A. Uman, University of Florida
  • Book: The Art and Science of Lightning Protection
  • Online publication: 17 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511585890.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Lightning warning
  • Martin A. Uman, University of Florida
  • Book: The Art and Science of Lightning Protection
  • Online publication: 17 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511585890.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Lightning warning
  • Martin A. Uman, University of Florida
  • Book: The Art and Science of Lightning Protection
  • Online publication: 17 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511585890.009
Available formats
×