Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-09T13:46:15.854Z Has data issue: false hasContentIssue false

6 - Structure and Function of Hemoglobin and Its Dysfunction in Sickle Cell Disease

from SECTION ONE - THE MOLECULAR, CELLULAR, AND GENETIC BASIS OF HEMOGLOBIN DISORDERS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Hemoglobin has evolved to be an efficient oxygen (O2) transporter. Its function, understood in terms of a two-state model of allostery, serves as a paradigm for many other proteins. A single β-globin gene (HBB glu6val) point mutation resulting in sickle hemoglobin (HbS) is the proximate cause of sickle cell disease (Chapter 19). The primary cause of the disease is HbS polymerization that injures and deforms the sickle erythrocyte, causing many pathological consequences discussed elsewhere in this book.

STRUCTURAL ASPECTS OF HEMOGLOBIN

Hemoglobin is a 64-kD, nearly spherical protein with a diameter of approximately 5.5 nm. Its three-dimensional structure was solved by Max F. Perutz who discussed the molecular anatomy and physiology of hemoglobin in the first edition of this book. It is a dimer of dimers, with two α subunits and two β subunits (Fig. 6.1). The α chains have 141 amino acid residues and the β chains have 146 residues. Each of the α and β chains resemble each other closely in both secondary (α helical) and tertiary structure. Moreover, even though the primary amino acid sequence is different, each subunit also resembles myoglobin, a heme-containing globin having only one subunit in both secondary and tertiary structure. Generally, nonpolar groups are found in the interior of the subunits and polar residues are found on the surface. The SH group of the cysteine at position 93 of the β chain is exposed to solvent in the oxygenated form of hemoglobin, but it is partially hidden when hemoglobin is deoxygenated.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 101 - 118
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Perutz, MF. Structure and mechanism of hemoglobin. Br Med Bull. 1976;32(3):195–208.CrossRefGoogle Scholar
Antonini, E, Brunori, M. Hemoglobin and Myoglobin in their Reactions with Ligands. Amsterdam, North Holland Publishing Co.; 1971.Google Scholar
Bohr, C, Hasselbalch, K, Krogh, A. Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensaeurespannung des Blutes auf dessen Sauerstoffbindung ubt. Skand Arch Physiol. 1904;16:402–412.CrossRefGoogle Scholar
Monod, J, Wyman, J, Changeux, J-P. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965;12:88–112.CrossRefGoogle ScholarPubMed
Perutz, MF. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970;228:726–739.CrossRefGoogle ScholarPubMed
Perutz, MF, Wilkinson, AJ, Paoli, M, Dodson GG. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Ann Rev Biophys Biomolec Struct. 1998;27: 1–34.CrossRefGoogle ScholarPubMed
Eaton, WA, Henry, ER, Hofrichter, J, Mozzarelli, A. Is cooperative oxygen binding by hemoglobin really understood?Nat Struct Biol. 1999;6(4):351–358.CrossRefGoogle ScholarPubMed
Gibson, QH. The photochemical formation of a quickly reacting form of haemoglobin. Biochem J. 1959;71:293–303.CrossRefGoogle ScholarPubMed
Moore, EG, Gibson, QH. Cooperativity in dissociation of nitric-oxide from hemoglobin. J Biol Chem. 1976;251(9): 2788–2794.Google ScholarPubMed
Ivano Bertini, HBG, Stiefel, EI, Valentine, JS. Biological Inorganic Chemistry Structure and Reactivity. Sausalito, CA: University Science Books; 2007.Google Scholar
Patel, RP, Hogg, N, Spencer, NY, Kalyanaraman, B, Matalon, S, Darley-Usmar, VM. Biochemical characterization of human S-nitrosohemoglobin – Effects on oxygen binding and transnitrosation. J Biol Chem. 1999;274(22):15487–15492.CrossRefGoogle ScholarPubMed
Edelstein, SJ. Cooperative interactions of hemoglobin. Annu Rev Biochem. 1975;44:209–232.CrossRefGoogle ScholarPubMed
Mathews, AJ, Olson, JS. Assignment of rate constants for O2 and CO binding to alpha-subunit and beta-subunit within R-state and T-state human hemoglobin. Methods Enzymol. 1994;232:363–386.CrossRefGoogle Scholar
Fetler, BK, Simplaceanu, V, Ho, C. H-1-Nmr investigation of the oxygenation of hemoglobin in intact human red-blood-cells. Biophys J. 1995;68(2):681–693.CrossRefGoogle Scholar
Brunori, M, Coletta, M, Dicera, E. A cooperative model for ligand-binding to biological macromolecules as applied to oxygen carriers. Biophys Chem. 1986;23(3–4):215–222.CrossRefGoogle ScholarPubMed
Henry, ER, Bettati, S, Hofrichter, J, Eaton, WA. A tertiary two-state allosteric model for hemoglobin. Biophys Chem. 2002;98(1–2):149–164.CrossRefGoogle ScholarPubMed
Yonetani, T, Park, S, Tsuneshige, A, Imai, K, Kanaori, K. Global allostery model of hemoglobin – Modulation of O-2 affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors. J Biol Chem. 2002;277(37):34508–34520.CrossRefGoogle ScholarPubMed
Ackers, GK, Holt, JM, Huang, YW, Grinkova, Y, Klinger, AL, Denisov, I. Confirmation of a unique intra-dimer cooperativity in the human hemoglobin alpha(1)beta(1) half-oxygenated intermediate supports the symmetry rule model of allosteric regulation. Proteins. Suppl. 4, 2000:23–43.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Yonetani, T, Tsuneshige, A, Zhou, YX, Chen, XS. Electron paramagnetic resonance and oxygen binding studies of alpha-nitrosyl hemoglobin – A novel oxygen carrier having noassisted allosteric functions. J Biol Chem. 1998;273(32): 20323–20333.CrossRefGoogle ScholarPubMed
Silva, MM, Rogers, PH, Arnone, A. A 3rd quaternary structure of human hemoglobin-a at 1.7-a-angstrom resolution. J Biol Chem. 1992;267(24):17248–17256.Google Scholar
Safo, MK, Abraham, DJ. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin. Biochemistry. 2005;44(23): 8347–8359.CrossRefGoogle ScholarPubMed
Tame, H.JR. What is the true structure of liganded haemoglobin?Trends Biochem Sci. 1999;24(10):372–377.CrossRefGoogle Scholar
Lukin, JA, Ho, C. The structure-function relationship of hemoglobin in solution at atomic resolution. Chem Rev. 2004;104(3):1219–1230.CrossRefGoogle ScholarPubMed
Lukin, JA, Kontaxis, G, Simplaceanu, V, Yuan, Y, Bax, A, Ho, C. Quaternary structure of hemoglobin in solution. Proc Natl Acad Sci USA. 2003;100(2):517–520.CrossRefGoogle ScholarPubMed
Gong, QG, Simplaceanu, V, Lukin, JA, Giovannelli, JL, Ho, NT, Ho, C. Quaternary structure of carbonmonoxyhemoglobins in solution: structural changes induced by the allosteric effector inositol hexaphosphate. Biochemistry. 2006;45(16):5140–5148.CrossRefGoogle ScholarPubMed
Sahu, SC, Simplaceanu, V, Gong, Q, et al. Insights into the Solution Structure of Human Deoxyhemoglobin in Absence and Presence of an Allosteric Effector. Biochem Cell Biol. 2007;46(35):9973–9980.Google ScholarPubMed
Cabrales, P, Tsai, AG, Intaglietta, M. Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation. 2007;72(2):306–318.CrossRefGoogle ScholarPubMed
Mannaioni, PF, Vannacci, A, Masini, E. Carbon monoxide: the bad and the good side of the coin, from neuronal death to anti-inflammatory activity. Inflamm Res. 2006;55(7):261–273.CrossRefGoogle ScholarPubMed
Ryter, SW, Choi, AMK. Therapeutic applications of carbon monoxide in lung disease. Curr Opin Pharmacol. 2006;6(3): 257–262.CrossRefGoogle ScholarPubMed
Morse, D, Choi, AMK. Heme oxygenase-1 – From bench to bedside. Am J Resp Crit Care. 2005;172(6):660–670.CrossRefGoogle ScholarPubMed
Ignarro, LJ, Buga, GM, Wood, KS, Byrns, RE, Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric-oxide. Proc Natl Acad Sci USA. 1987;84(24):9265–9269.CrossRefGoogle ScholarPubMed
Ignarro, LJ. Nitric Oxide Biology and Pathobiology. San Diego: Academic Press; 2000.Google Scholar
Sharma, VS, Ranney, HM. Dissociation of NO from nitrosylhemoglobin. J Biol Chem. 1978;253(18):6467–6472.Google ScholarPubMed
Hille, R, Olson, JS, Palmer, G. Spectral transitions of nitrosyl hemes during ligand-binding to hemoglobin. J Biol Chem. 1979;254(23):2110–2120.Google Scholar
Kon, H. Paramagnetic resonance study of nitric oxide hemoglobin. J Biol Chem. 1968;243:4350–4357.Google ScholarPubMed
Szabo, A, Perutz, MF. Equilibrium between 6-coordinated and 5-coordinated hemes in nitrosylhemoglobin – Interpretation of electron-spin resonance-spectra. Biochemistry. 1976;15(20):4427–4428.CrossRefGoogle Scholar
Huang, TH. Nmr-studies of the quaternary structure and heterogeneity of nitrosylhemoglobin and methemoglobin. J Biol Chem. 1979;254(22):1467–74.Google ScholarPubMed
Xu, XL, Lockamy, VL, Chen, KJ, et al. Effects of iron nitrosylation on sickle cell hemoglobin solubility. J Biol Chem. 2002;277(39):36787–36792.CrossRefGoogle ScholarPubMed
Azizi, F, Kielbasa, JE, Adeyiga, AM, et al. Rates of nitric oxide dissociation from hemoglobin. Free Rad Biol Med. 2005;39: 145–151.CrossRefGoogle ScholarPubMed
Cassoly, R, Gibson, QH. Conformation, co-operativity and ligand-binding in human hemoglobin. J Mol Biol. 1975; 91(3):301–313.CrossRefGoogle ScholarPubMed
Hille, R, Palmer, G, Olson, JS. Chain equivalence in reaction of nitric-oxide with hemoglobin. J Biol Chem. 1977;252(1):403–405.Google ScholarPubMed
Gow, AJ, Luchsinger, BP, Pawloski, JR, Singel, DJ, Stamler, JS. The oxyhemoglobin reaction of nitric oxide. Proc Natl Acad Sci USA. 1999;96(16):9027–9032.CrossRefGoogle ScholarPubMed
Huang, Z, Louderback, JG, Goyal, M, Azizi, F, King, SB, Kim-Shapiro, DB. Nitric oxide binding to oxygenated hemoglobin under physiological conditions. Biochim Biophys Acta. 2001;1568(3):252–260.CrossRefGoogle ScholarPubMed
Joshi, MS, Ferguson, TB, Han, TH, et al. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc Natl Acad Sci USA. 2002;99(16):10341–10346.CrossRefGoogle ScholarPubMed
Morris, RJ, Gibson, QH. The role of diffusion in limiting the rate of ligand-binding to hemoglobin. J Biol Chem. 1980; 255(17):8050–8053.Google Scholar
Huang, Z, Ucer, KB, Murphy, T, Williams, RT, King, SB, Kim-Shapiro, DB. Kinetics of nitric oxide binding to R-state hemoglobin. Biochem Biophys Res Commun. 2002;292(4):812–818.CrossRefGoogle ScholarPubMed
Huang, KT, Huang, Z, Kim-Shapiro, DB. Nitric oxide red blood cell membrane permeability at high and low oxygen tension. Nitric Oxide. 2006;16:209–216.CrossRefGoogle ScholarPubMed
Grubina, R, Huang, Z, Shiva, S, et al. Concerted nitric oxide formation and release from the simultaneous reactions of nitrite with deoxy- and oxyhemoglobin. J Biol Chem. 2007; 282(17):12916–12927.CrossRefGoogle ScholarPubMed
Kinoshita, A, Nakayama, Y, Kitayama, T, Tomita, M. Simulation study of methemoglobin reduction in erythrocytes – Differential contributions of two pathways to tolerance to oxidative stress. FEBS J. 2007;274(6):1449–1458.CrossRefGoogle ScholarPubMed
Mansouri, A, Lurie, AA. Concise review – Methemoglobinemia. Am J Hematol. 1993;42(1):7–12.CrossRefGoogle ScholarPubMed
Jaffe, ER. Methemoglobinemia. Clin Hematol. 1981;10(1):99–122.Google Scholar
Nagababu, E, Ramasamy, S, Abernethy, DR, Rifkind, JM. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J Biol Chem. 2003;278(47):46349–46356.CrossRefGoogle ScholarPubMed
Angelo, M, Singel, DJ, Stamler, JS. An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc Natl Acad Sci USA. 2006;103(22):8366–8371.CrossRefGoogle ScholarPubMed
Marti, MA, Crespo, A, Bari, SE, Doctorovich, FA, Estrin, DA. QM-MM study of nitrite reduction by nitrite reductase of Pseudomonas aeruginosa. J Phys Chem B. 2004;108(46):18073–18080.CrossRefGoogle Scholar
Cooper, CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999;1411(2–3):290–309.CrossRefGoogle ScholarPubMed
Fernandez, BO, Ford, PC. Nitrite catalyzes ferriheme protein reductive nitrosylation. J Am Chem Soc. 2003;125(35):10510–10511.CrossRefGoogle ScholarPubMed
Huang, KT, Keszler, A, Patel, N, et al. The reaction between nitrite and deoxyhemoglobin: reassessment of reaction kinetics and stoichiometry. J Biol Chem. 2005;280:31126–31131.CrossRefGoogle ScholarPubMed
Gladwin, MT, Schechter, AN, Kim-Shapiro, DB, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005; 1:308–314.CrossRefGoogle ScholarPubMed
Eaton, WA, Hofrichter, J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279.CrossRefGoogle ScholarPubMed
Hirsch, RE, Juszczak, LJ, Fataliev, NA, Friedman, JM, Nagel, RL. Solution-active structural alterations in liganded hemoglobins C (beta 6 Glu right-arrow Lys) and S (beta 6 Glu right-arrow Val). J Biol Chem. 1999;274(20):13777–13782.CrossRefGoogle Scholar
Allen, DW, Wyman, J. Equilibre de l'hémoglobine de drépanoctose avec l'oxygène. Rev Hematol. 1954;9:155–157.Google Scholar
Penneley, RR, Noble, RW. Functional identity of hemoglobin S and A in the absence of polymerization. In: Caughey, WS, ed. Biochemical and Chemical Aspects of Hemoglobin Abnormalities. New York: Academic Press; 1978:401–411.CrossRefGoogle Scholar
Deyoung, A, Noble, RW. Oxygen binding to sickle cell hemoglobin. Methods Enzymol. 1981;76:792–805.CrossRefGoogle ScholarPubMed
Shapiro, DB, Paquette, SJ, Esquerra, RM, et al. Nanosecond absorption study of kinetics associated with carbon-monoxide rebinding to hemoglobin-S and hemoglobin-C following ligand photolysis. Biochem Biophys Res Commun. 1994;205(1):154–160.CrossRefGoogle ScholarPubMed
Eaton, WA, Hofrichter, J. Hemoglobin S gelation and sickle cell disease. Blood. 1987;70(5):1245–1266.Google ScholarPubMed
Eaton, WA, Hofrichter, J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279.CrossRefGoogle ScholarPubMed
Harrington, JP. Alteration of redox stability of hemoglobins A and S by biological buffers. Comp Biochem Physiol B Biochem Mol Biol. 1998;119(2):305–309.CrossRefGoogle Scholar
Hebbel, RP, Morgan, WT, Eaton, JW, Hedlund, BE. Accelerated autooxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci USA. 1988;85(1):237–241.CrossRefGoogle Scholar
Dykes, GW, Crepeau, RH, Edelstein, SJ. Three-dimensional reconstruction of 14-filament fibers of hemoglobin S. J Mol Biol. 1979;130:451–472.CrossRefGoogle ScholarPubMed
Harrington, DL, Adachi, K, Royer, WE. The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol. 1997;272:398–407.CrossRefGoogle ScholarPubMed
Dykes, GW, Crepeau, RH, Edelstein, SJ. Three dimensional reconstruction of the fibers of sickle cell hemoglobin. Nature. 1978;272:506–510.CrossRefGoogle Scholar
Sokolov, L, Mukerji, I. Structure of sickle cell hemoglobin fibers probed with UV resonance Raman spectroscopy. J Phys Chem B. 2000;104(46):10835–10843.CrossRefGoogle Scholar
Roufberg, A, Ferrone, FA. A model for the sickle hemoglobin fiber using both mutation sites. Protein Sci. 2000;9(5):1031–1034.CrossRefGoogle ScholarPubMed
Cretegny, I, Edelstein, SJ. Double strand packing in hemoglobin-S fibers. J Mol Biol. 1993;230(3):733–738.CrossRefGoogle ScholarPubMed
Watowich, SJ, Gross, LJ, Josephs, R. Analysis of the intermolecular contacts within sickle hemoglobin fibers – Effect of site-specific substitutions, fiber pitch, and double-strand disorder. J Struct Biol. 1993;111(3):161–179.CrossRefGoogle ScholarPubMed
Mu, XQ, Makowski, L, Magdoff-Fairchild, B. Analysis of the stability of hemoglobin S double strands. Biophys J. 1998;74(1): 655–668.CrossRefGoogle ScholarPubMed
Turner, MS, Briehl, RW, Ferrone, FA, Josephs, R. Twisted protein aggregates and disease: The stability of sickle hemoglobin fibers. Phys Rev Lett. 2003;90(12).CrossRefGoogle ScholarPubMed
Turner, MS, Briehl, RW, Wang, JC, Ferrone, FA, Josephs, R. Anisotropy in sickle hemoglobin fibers from variations in bending and twist. J Mol Biol. 2006;357(5):1422–1427.CrossRefGoogle ScholarPubMed
Samuel, RE, Salmon, ED, Briehl, RW. Nucleation and growth of fibers and gel formation in sickle-cell hemoglobin. Nature. 1990;345(6278):833–835.CrossRefGoogle Scholar
Briehl, RW. Nucleation, fiber growth and melting, and domain formation and structure in sickle-cell hemoglobin gels. J Mol Biol. 1995;245(5):710–723.CrossRefGoogle ScholarPubMed
Jones, CW, Wang, JC, Ferrone, FA, Briehl, RW, Turner, MS. Interactions between sickle hemoglobin fibers. Faraday Discuss. 2003;123:221–236.CrossRefGoogle ScholarPubMed
Ferrone, FA, Hofrichter, J, Eaton, WA. Kinetics of sickle hemoglobin polymerization. 1. Studies using temperature-jump and laser photolysis techniques. J Mol Biol. 1985;183(4): 591–610.CrossRefGoogle ScholarPubMed
Ferrone, FA, Hofrichter, J, Eaton, WA. Kinetics of sickle hemoglobin polymerization. 2. A double nucleation mechanism. J Mol Biol. 1985;183(4):611–631.CrossRefGoogle Scholar
Mirchev, R, Ferrone, FA. The structural link between polymerization and sickle cell disease. J Mol Biol. 1997;265(5):475–479.CrossRefGoogle ScholarPubMed
Rotter, MA, Kwong, S, Briehl, RW, Ferrone, FA. Heterogeneous nucleation in sickle hemoglobin: experimental validation of a structural mechanism. Biophys J. 2005;89(4):2677–2684.CrossRefGoogle ScholarPubMed
McDade, WA, Carragher, B, Miller, CA, Josephs, R. On the assembly of sickle hemoglobin fascicles. J Mol Biol. 1989; 206(4):637–649.CrossRefGoogle ScholarPubMed
Wang, JC, Turner, MS, Agarwal, G, et al. Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths. J Mol Biol. 2002;315(4):601–612.CrossRefGoogle ScholarPubMed
Briehl, RW, Guzman, AE. Fragility and structure of hemoglobin S fibers and gels and their consequences for gelation kinetics and rheology. Blood. 1994;83(2):573–579.Google ScholarPubMed
Samuel, RE, Guzman, AE, Briehl, RW. Hemoglobin-S polymerization and gelation under shear. 2. The joint concentration and shear dependence of kinetics. Blood. 1993;82(11):3474–3481.Google ScholarPubMed
Briehl, RW, Nikolopoulou, P. Kinetics of hemoglobin S polymerization and gelation under shear. 1. Shape of the viscosity progress curve and dependence of delay time and reaction-rate on shear rate and temperature. Blood. 1993;81(9):2420–2428.Google ScholarPubMed
Kam, Z, Hofrichter, J. Quasi-elastic laser-light scattering from solutions and gels of hemoglobin-S. Biophys J. 1986;50(5): 1015–1020.CrossRefGoogle ScholarPubMed
Galkin, O, Nagel, RL, Vekilov, PG. The kinetics of nucleation and growth of sickle cell hemoglobin fibers. J Mol Biol. 2007; 365(2):425–439.CrossRefGoogle ScholarPubMed
Galkin, O, Chen, K, Nagel, RL, Hirsch, RE, Vekilov, PG. Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc Natl Acad Sci USA. 2002;99(13):8479–8483.CrossRefGoogle ScholarPubMed
Galkin, O, Pan, W, Filobelo, L, Hirsch, R, Nagel, R, Vekilov, PG. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers. Biophys J. 2007;93:902–913.CrossRefGoogle ScholarPubMed
Pan, WC, Galkin, O, Filobelo, L, Nagel, RL, Vekilov, PG. Metastable mesoscopic clusters in solutions of sickle-cell hemoglobin. Biophys J. 2007;92(1):267–277.CrossRefGoogle ScholarPubMed
San Biagio, PL, Palma, MU. Solvent-induced forces and fluctuations: a novel comparison of human hemoglobin S and A. Comm Theoretic Biol. 1992;2:453–470.Google Scholar
Ferrone, FA, Rotter, MA. Crowding and the polymerization of sickle hemoglobin. J Mol Recogn. 2004;17(5):497–504.CrossRefGoogle ScholarPubMed
Minton, AP. Molecular crowding: Analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol. 1998;295:127–149.CrossRefGoogle ScholarPubMed
Sunshine, HR, Hofrichter, J, Ferrone, FA, Eaton, WA. Oxygen binding by sickle-cell hemoglobin polymers. J Mol Biol. 1982;158(2):251–273.CrossRefGoogle ScholarPubMed
Padlan, EA, Love, WE. Refined crystal-structure of deoxyhemoglobin-S. 2. Molecular-interactions in the crystal. J Biol Chem. 1985;260(14):8280–82891.Google Scholar
Itano, HA. Solubilities of naturally occurring mixtures of human hemoglobin. Arch Biochem Biophys. 1953;47:148–159.CrossRefGoogle ScholarPubMed
Adachi, K, Asakura, T. Demonstration of a delay time during aggregation of diluted solutions of deoxyhemoglobin-S and hemoglobin charlem in concentrated phosphate buffer. J Biol Chem. 1978;253(19):6641–6643.Google ScholarPubMed
Adachi, K, Asakura, T. Nucleation-controlled aggregation of deoxyhemoglobin-S – possible difference in the size of nuclei in different phosphate concentrations. J Biol Chem. 1979;254(16):7765–7771.Google ScholarPubMed
Adachi, K, Asakura, T. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers. Blood Cells. 1982;8(2):213–224.Google ScholarPubMed
Adachi, K, Asakura, T. Multiple nature of polymers of deoxyhemoglobin-S prepared by different methods. J Biol Chem. 1983;258(5):3045–3050.Google ScholarPubMed
Bookchin, RM, Balazs, T. Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran – Effects of non-S hemoglobins and inhibitors. J Biol Chem. 1999;274(10):6689–6697.CrossRefGoogle ScholarPubMed
Yohe, ME, Sheffield, KM, Mukerji, I. Solubility of fluoromethemoglobin S: effect of phosphate and temperature on polymerization. Biophys J. 2000;78(6):3218–3226.CrossRefGoogle ScholarPubMed
Fabry, ME, Desrosiers, L, Suzuka, SM. Direct intracellular measurement of deoxygenated hemoglobin S solubility. Blood. 2001;98(3):883–884.CrossRefGoogle ScholarPubMed
Roth, EF, Bookchin, RM, Nagel, RL. Deoxyhemoglobin S gelation and insolubility at high ionic-strength are distinct phenomena. J Lab Clin Med. 1979;93(5):867–871.Google ScholarPubMed
Poillon, WN, Bertles, JF. Effects of ethanol and 3,4,-dihydro-2,2-dimethyl-2h-1-benzopyran-6-butyric acid on solubility of sickle hemoglobin. Biochem Biophys Res Commun. 1977;75(3):636–642.CrossRefGoogle Scholar
Chen, KJ, Ballas, SK, Hantgan, RR, Kim-Shapiro, DB. Aggregation of normal and sickle hemoglobin in high concentration phosphate buffer. Biophys J. 2004;87(6):4113–4121.CrossRefGoogle ScholarPubMed
Reiter, CD, Wang, XD, Tanus-Santos, JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–1389.CrossRefGoogle ScholarPubMed
Cokic, VP, Smith, RD, Beleslin-Cokic, BB, Gladwin, MT, Schechter, AN. Nitric oxide donors induce fetal hemoglobin in human erythroid cells by a mechanism involving cGMP. Blood Cell Mol Dis. 2003;31(1):164–164.Google Scholar
Cokic, VP, Smith, RD, Beleslin-Cokic, BB, et al. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest. 2003;111(2): 231–239.CrossRefGoogle ScholarPubMed
Head, CA, Brugnara, C, MartinezRuiz, R, et al. Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo. J Clin Invest. 1997;100(5):1193–1198.CrossRefGoogle ScholarPubMed
Gladwin, MT, Ognibene, FP, Pannell, LK, et al. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc Natl Acad Sci USA. 2000;97(18):9943–9948.CrossRefGoogle ScholarPubMed
Garel, MC, Domenget, C, Caburimartin, J, Prehu, C, Galacteros, F, Beuzard, Y. Covalent binding of glutathione to hemoglobin. 1. Inhibition of hemoglobin S polymerization. J Biol Chem. 1986;261(31):4704–4709.Google Scholar
Bonaventura, C, Godette, G, Ferruzzi, G, Tesh, S, Stevens, RD, Henkens, R. Responses of normal and sickle cell hemoglobin to S-nitroscysteine: implications for therapeutic applications of NO in treatment of sickle cell disease. Biophys Chem. 2002;98(1–2):165–181.CrossRefGoogle ScholarPubMed
Knee, KM, Roden, CK, Flory, MR, Mukerji, I. The role of beta 93 Cys in the inhibition of Hb S fiber formation. Biophys Chem. 2007;127(3):181–193.CrossRefGoogle Scholar
Cheng, Y, Shen, TJ, Simplaceanu, V, Ho, C. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine. Biochemistry. 2002;41(39):11901–11913.CrossRefGoogle ScholarPubMed
Chan, NL, Rogers, PH, Arnone, A. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry. 1998;37(47):16459–16464.CrossRefGoogle ScholarPubMed
Brittenham, GM, Schechter, AN, Noguchi, CT. Hemoglobin-S polymerization – primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood. 1985; 65(1):183–189.Google ScholarPubMed
Trabuchet, G, Elion, J, Baudot, G, et al. Origin and spread of beta-globin gene-mutations in India, Africa, and Mediterranean – analysis of the 5′ flanking and intragenic sequences of beta-S and beta-C genes. Hum Biol. 1991;63(3):241–252.Google ScholarPubMed
Brittenham, G, Lozoff, B, Harris, JW, Mayson, SM, Miller, A, Huisman, THJ. Sickle-cell anemia and trait in southern India – further-studies. Am J Hematol. 1979;6(2):107–123.CrossRefGoogle ScholarPubMed
Perrine, RP, Pembrey, ME, John, P, Perrine, S, Shoup, F. Natural history of sickle-cell anemia in Saudi Arabs – study of 270 subjects. Ann Intern Med. 1978;88(1):1–6.CrossRefGoogle ScholarPubMed
Brittenham, G, Lozoff, B, Harris, JW, Sharma, VS, Narasimhan, S. Sickle-cell anemia and trait in a population of southern India. Am J Hematol. 1977;2(1):25–32.CrossRefGoogle Scholar
Noguchi, CT, Schechter, AN. Sickle hemoglobin polymerization in solution and in cells. Annu Rev Biophys Bio. 1985; 14:239–263.CrossRefGoogle ScholarPubMed
Poillon, WN, Kim, BC, Rodgers, GP, Noguchi, CT, Schechter, AN. Sparing effect of hemoglobin-F and hemoglobin-A2 on the polymerization of hemoglobin-S at physiological ligand saturations. Proc Natl Acad Sci USA. 1993;90(11):5039–5043.CrossRefGoogle Scholar
Goldberg, MA, Husson, MA, Bunn, HF. Participation of hemoglobins A and F in polymerization of sickle hemoglobin. J Biol Chem. 1977;252(10):3414–3421.Google Scholar
Benesch, RE, Edalji, R, Benesch, R, Kwong, S. Solubilization of hemoglobin-S by other hemoglobins. Proc Natl Acad Sci USA. 1980;77(9):5130–5134.CrossRefGoogle ScholarPubMed
Bertles, JF, Rabinowitz, R, Dobler, J. Hemoglobin interaction: modification of solid phase composition in sickling phenomenon. Science. 1970;169:375–377.CrossRefGoogle ScholarPubMed
Bunn, HF, Noguchi, CT, Hofrichter, J, Schechter, GP, Schechter, AN, Eaton, WA. Molecular and cellular pathogenesis of hemoglobin-Sc disease. Proc Natl Acad Sci USA. 1982;79(23): 7527–7531.CrossRefGoogle ScholarPubMed
Sunshine, HR, Hofrichter, J, Eaton, WA. Gelation of sickle-cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J Mol Biol. 1979;133(4):435–467.CrossRefGoogle ScholarPubMed
Cheetham, RC, Huehns, ER, Rosemeyer, MA. Participation of hemoglobin-A, hemoglobin-F, hemoglobin-A2 and hemoglobin-C in polymerization of hemoglobin-S. J Mol Biol. 1979;129(1):45–61.CrossRefGoogle Scholar
Hofrichter, J. Kinetics and mechanism of deoxyhemoglobin-S gelation – new approach to understanding sickle-cell disease. Proc Natl Acad Sci USA. 1974;71:4864–4848.CrossRefGoogle ScholarPubMed
Hofrichter, J, Ross, PD, Eaton, WA. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci USA. 1976; 73(9):3035–3039.CrossRefGoogle ScholarPubMed
Ferrone, FA, Hofrichter, J, Sunshine, HR, Eaton, WA. Kinetic studies on photolysis-induced gelation of sickle-cell hemoglobin suggest a new mechanism. Biophys J. 1980;32(1):361–380.CrossRefGoogle ScholarPubMed
Ferrone, FA. Polymerization and sickle cell disease: a molecular view. Microcirculation. 2004;11(2):115–128.CrossRefGoogle ScholarPubMed
Cao, ZQ, Ferrone, FA. Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method. Biophys J. 1997;72(1):343–52.CrossRefGoogle ScholarPubMed
Aprelev, A, Rotter, MA, Etzion, Z, Bookchin, RM, Briehl, RW, Ferrone, FA. The effects of erythrocyte membranes on the nucleation of sickle hemoglobin. Biophys J. 2005;88(4):2815–2822.CrossRefGoogle ScholarPubMed
Ferrone, FA, Ivanova, M, Jasuja, R. Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach. Biophys J. 2002;82(1):399–406.CrossRefGoogle Scholar
Rotter, M, Aprelev, A, Adachi, K, Ferrone, FA. Molecular crowding limits the role of fetal hemoglobin in therapy for sickle cell disease. J Mol Biol. 2005;347(5):1015–1023.CrossRefGoogle ScholarPubMed
Bridges, KR, Barabino, GD, Brugnara, C, et al. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood. 1996;88(12):4701–4710.Google ScholarPubMed
Mozzarelli, A, Hofrichter, J, Eaton, WA. Delay time of hemoglobin-S polymerization prevents most cells from sickling in vivo. Science. 1987;237(4814):500–506.CrossRefGoogle ScholarPubMed
Moffat, K, Gibson, QH. The rates of polymerization and depolymerization of sickle cell hemoglobin. Biochem Biophys Res Commun. 1974;61:237–242.CrossRefGoogle ScholarPubMed
Messer, MJ, Hahn, JA, Bradley, TB. The kinetics of sickling and unsickling of red cells under physiological conditions: rheologic and ultrastructural correlations. In: Hercules, JI, Cottam, MR, Waterman, MR, Schechter, AN, eds. Proceedings of the Symposium on Molecular and Cellular Aspects of Sickle Cell Disease. Bethesda: National Institutes of Health; 1976:225–234.Google Scholar
Turner, MS, Agarwal, G, Jones, CW, et al. Fiber depolymerization. Biophys J. 2006;91(3):1008–1013.CrossRefGoogle ScholarPubMed
Agarwal, G, Wang, JC, Kwong, S, et al. Sickle hemoglobin fibers: mechanisms of depolymerization. J Mol Biol. 2002;322(2): 395–412.CrossRefGoogle ScholarPubMed
Huang, Z, Hearne, L, Irby, CE, King, SB, Ballas, SK, Kim-Shapiro, DB. Kinetics of increased deformability of deoxygenated sickle cells upon oxygenation. Biophys J. 2003;85(4):2374–2383.CrossRefGoogle ScholarPubMed
Louderback, JG, Ballas, SK, Kim-Shapiro, DB. Sickle hemoglobin polymer melting in high concentration phosphate buffer. Biophys J. 1999;76(4):2216–2222.CrossRefGoogle ScholarPubMed
Louderback, JG, Aroutiounian, SK, Kerr, WC, Ballas, SK, Kim-Shapiro, DB. Temperature and domain size dependence of sickle cell hemoglobin polymer melting in high concentration phosphate buffer. Biophys Chem. 1999;80(1):21–30.CrossRefGoogle ScholarPubMed
Aroutiounian, SK, Louderback, JG, Ballas, SK, Kim-Shapiro, DB. Evidence for carbon monoxide binding to sickle cell polymers during melting. Biophys Chem. 2001;91(2):167–181.CrossRefGoogle ScholarPubMed
Noguchi, CT, Torchia, DA, Schechter, AN. C-13-Nmr quantitation of polymer in deoxyhemoglobin-S gels. Proc Natl Acad Sci USA. 1979;76(10):4936–4940.CrossRefGoogle Scholar
Noguchi, CT, Torchia, DA, Schechter, AN. Determination of deoxyhemoglobin-S polymer in sickle erythrocytes upon deoxygenation. Proc Natl Acad Sci USA. 1980;77(9):5487–5491.CrossRefGoogle ScholarPubMed
Noguchi, CT, Schechter, AN. The intracellular polymerization of sickle hemoglobin and its relevance to sickle-cell disease. Blood. 1981;58(6):1057–1068.Google ScholarPubMed
Noguchi, CT, Rodgers, GP, Schechter, AN. Intracellular polymerization – disease severity and therapeutic predictions. Ann NY Acad Sci. 1989;565:75–82.CrossRefGoogle ScholarPubMed
Hogg, JC, Coxson, HO, Brumwell, ML, et al. Erythrocyte and polymorphonuclear cell transit-time and concentration in human pulmonary capillaries. J Appl Physiol. 1994;77(4): 1795–1800.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×