Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T18:18:57.635Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  21 October 2009

Aldemaro Romero
Affiliation:
Southern Illinois University Edwardsville
Get access
Type
Chapter
Information
Cave Biology
Life in Darkness
, pp. 227 - 277
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, E. C. 1890. Louis Agassiz. His Life and Correspondence. Boston, MA: Houghton, Mifflin and Company.Google Scholar
Agassiz, L. 1847 [1848]. [Plan for an investigation of the embryology, anatomy and effect of light on the blind-fish of the Mammoth Cave, Amblyopsis spelaeus]. Proceedings of the American Academy of Arts and Sciences 1:1–180.Google Scholar
Agassiz, L. 1851. Observations on the blind fish of the Mammoth cave. American Journal of Science 11:127–8.Google Scholar
Agassiz, L. 1859. An Essay on Classification. London: Longman, Brown, Green, Longmans, Roberts.Google Scholar
Agrios, G. N. 2004. Plant Pathology, 5th edition. San Diego, CA: Academic Press.Google Scholar
Airoldi, L. & Cinelli, F.. 1996. Variability of fluxes of particulate material in a submarine cave with chemolithoautotrophic inputs or organic carbon. Marine Ecology Progress Series 139:205–17.CrossRefGoogle Scholar
Airoldi, L., Southward, A. J., Niccolai, I. & Cinelli, F.. 1997. Sources and pathways of particulate organic carbon in a submarine cave with sulphur water springs. Water, Air and Soil Pollution 99:353–62.CrossRefGoogle Scholar
Akam, M. 1998. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. International Journal of Developmental Biology, special issue 42:445–51.Google ScholarPubMed
Alberti, L.1550. Descrittione di tvtta Italia. Bologna: Anselmo Giaccarelli.
Allinson, G., Mispagel, C., Kajiwara, N.et al. 2006. Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersi bassanii) in southeastern Australia. Chemosphere 64:1464–71.CrossRefGoogle Scholar
Allouc, J. & Harmelin, J. G.. 2001. Mn-Fe deposits in shallow cryptic marine environment: examples in northwestern Mediterranean submarine caves. Bulletin de la Société Géologique de France 172:765–78.CrossRefGoogle Scholar
Allred, K. 2004. Some carbonate erosion rates of Southeast Alaska. Journal of Cave and Karst Studies 66:89–97.Google Scholar
Anderson, L. 1976. Charles Bonnet's taxonomy and Chain of Being. Journal of the History of Ideas 37:45–58.CrossRefGoogle Scholar
Andersson, M. 1990. Evolution: a case of male opportunism. Nature 343:20.CrossRefGoogle ScholarPubMed
Andre, H. M. & Ducarme, X.. 2003. Rediscovery of the genus Pseudotydeus (Acari: Tydeoidea), with description of the adult using digital imaging. Insect Systematics and Evolution 34:373–9.CrossRefGoogle Scholar
Anker, A. & Iliffe, T. M.. 2000. Description of Bermudacaris harti, a new genus, and species (Crustacea: Decapoda: Alpheidae) from anchialine caves of Bermuda. Proceedings of the Biological Society of Washington 113:761–75.Google Scholar
,Anonymous. 1833. Cabinet of nature. Cavern of the guacharo. Monthly Repository 4:24–8.Google Scholar
,Anonymous. 1878. [A note on Proteus anguinus.] American Naturalist 12:321.Google Scholar
,Anonymous. 1889. Edible mushrooms of the United States. Science 13:453–5.Google Scholar
,Anonymous. 1981. Stephen L. Bishop. 1821–1857. Explorer and Guide. Mammoth Cave. Journal of Spelean History 15:11.Google Scholar
,Anonymous. 1992. Bishop, Stephen, pp. 82–3, in: Kleber, John. E. (ed.). Kentucky Encyclopedia. Lexington, KY: University Press of Kentucky.Google Scholar
Appel, T. A. 1988. The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. New York: Oxford University Press.Google Scholar
Argyll, Duke. of. 1867. The Reign of Law. London: Alexander Strahan.CrossRefGoogle Scholar
Ariani, A. P., Camassa, M. M. & Wittmann, K. J.. 1999. Faunistic and biocenotic aspects of a semi-hypogean water system: the ‘spunnulate’ of Torre Castiglione (Apulia, southern Italy), p. 31, in: Holcer, D. & Sasic, M. (eds.) Abstracts of the 14th International Symposium of Biospeleology, Makarska, Croatia, 19–26 September 1999.Google Scholar
Arita, H. T. 1993. Conservation biology of the cave bats of Mexico. Journal of Mammalogy 74:693–702.CrossRefGoogle Scholar
Arita, H. T. 1996. The conservation of cave-roosting bats in Yucatan, Mexico. Biological Conservation 76:177–85.CrossRefGoogle Scholar
Arita, H. T. & Vargas, J. A.. 1995. Natural-history, interspecific association, and incidence of the cave bats of Yucatan, Mexico. Southwestern Naturalist 40:29–37.Google Scholar
Armstrong, K. N. 2006. Phylogeographic structure in Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications for conservation. Acta Chiropterologica 8:63–81.CrossRefGoogle Scholar
Arnedo, M. A., Oromi, P., Muria, C., Macias-Hernandez, N. & Ribera, C.. 2007. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae: Dysderidae) in the Canary Islands. Invertebrate Systematics 21:623–60.CrossRefGoogle Scholar
Artigas, M., Glick, T. F. & Matínez, R. A.. 2006. Negotiating Darwin. The Vatican Confronts Evolution, 1877–1902. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Ashmole, N. P. & Ashmole, M. J.. 1997. The land fauna of Ascension Island: new data from caves and lava flows, and a reconstruction of the prehistoric ecosystem. Journal of Biogeography 24:549–89.CrossRefGoogle Scholar
Ashmole, N. P., Oromí, P., Ashmole, M. J. & Martín, J. L.. 1992. Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biological Journal of the Linnean Society 46:207–34.CrossRefGoogle Scholar
Avise, J. C. & Selander, R. K.. 1972. Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26:1–19.CrossRefGoogle ScholarPubMed
Ayala, F. 1971. Dobzhansky, Theodosius, pp. 233–42, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography. Vol. 4. New York: Scribner.Google Scholar
Badham, C. D. 1852. Prose halieutics. Fraser's Magazine 46:271.Google Scholar
Baker, J. K. 1962. The manner and efficiency of raptor depredations on bats. The Condor 64:500–4.CrossRefGoogle Scholar
Baker, K. M. 2004. On Condorcet's “sketch”. Daedalus 133:56–64.CrossRefGoogle Scholar
Baldock, R. N. & Womersley, H. B. S.. 2005. Marine benthic algae of the Althorpe Islands, South Australia. Transactions of the Royal Society of South Australia 129:116–27.Google Scholar
Banister, K. E. 1984. A subterranean population of Garra barreimiae (Teleostei: Cyprinidae) from Oman, with comments on the concept of regressive evolution. Journal of Natural History 18:927–38.CrossRefGoogle Scholar
Banta, A. M. 1909. The Fauna of Mayfield's Cave. Washington, D.C.: Carnegie Institution of Washington.Google Scholar
Banta, A. M. 1921. An eyeless daphnid, with remarks on the possible origin of eyeless cave animals. Science 53:462–3.CrossRefGoogle ScholarPubMed
Barnes, D. K. A. & Bell, J. J.. 2002. Coastal sponge communities of the West Indian Ocean: morphological richness and diversity. African Journal of Ecology 40:350–9.CrossRefGoogle Scholar
Barr, T. C. 1962a. The blind beetles of Mammoth Cave, Kentucky. American Midland Naturalist 68:278–84.CrossRefGoogle Scholar
Barr, T. C. 1962b. Studies on the cavernicole Ptomaphagus of the United States (Coleoptera: Catopidae)Psyche 70:50–8.CrossRefGoogle Scholar
Barr, T. C. 1966. Evolution of cave biology in the United States, 1822–1965. National Speleological Society Bulletin 28:15–21.Google Scholar
Barr, T. C. 1967. Observations on the ecology of caves. The American Naturalist 101: 475–91.CrossRefGoogle Scholar
Barr, T. C. 1986. Mammoth Cave in the years 1836–1855. Journal of Spelean History 20:39–40.Google Scholar
Barr, T. C. & Holsinger, J. R.. 1985. Speciation of cave faunas. Annual Review of Ecology and Systematics 16:313–37.CrossRefGoogle Scholar
Barranco, P. & Mayoral, J. G.. 2007. A new species of Eukoenenia (Palpigradi, Eukoeneniidae) from Morocco. Journal of Arachnology 35:318–24.CrossRefGoogle Scholar
Barrett, L., Gaynor, D., Rendall, D., Mitchell, D. & Henzi, S. P.. 2004. Habitual cave use and thermoregulation in chacma baboons. Journal of Human Evolution 46:215–22.CrossRefGoogle ScholarPubMed
Bartels, P. J. & Nelson, D. R.. 2006. A large-scale, multihabitat inventory of the Phylum Tardigrada in the Great Smoky Mountains National Park, USA: a preliminary report. Hydrobiologia 558:111–18.CrossRefGoogle Scholar
Barton, H. A. & Luiszer, F.. 2005. Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of biospeleogenesis. Journal of Cave and Karst Studies 67:28–38.Google Scholar
Barton, H. A. & Pace, N. R.. 2005. Discussion: persistent coliform contamination in Lechuguilla Cave pools. Journal of Cave and Karst Studies 67:55–7.Google Scholar
Barton, H. A., Spear, J. R. & Pace, N. R.. 2001. Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiology Journal 18:359–68.Google Scholar
Bartsch, I. & Tittley, I.. 2004. The rocky intertidal biotopes of Helgoland: present and past. Helgoland Marine Research 58:289–302.CrossRefGoogle Scholar
Bateson, W. 1922. Evolutionary faith and modern doubts. Science 55:1412.CrossRefGoogle ScholarPubMed
Baudinette, R. V., Wells, R. T., Sanderson, K. J. & Clark, B.. 1994. Microclimatic conditions in maternity caves of the bent-wing bat, Micropterus schreibersii – an attempted restoration of a former maternity site. Wildlife Research 21:607–19.CrossRefGoogle Scholar
Bell, J. J. 2002. The sponge community in a semi-submerged temperate sea cave: density, diversity and richness. Marine Ecology-Pubblicazioni della Stazione Zoologica di Napoli I. 23:297–311.CrossRefGoogle Scholar
Bellés, X. 1991. Survival, opportunism and convenience in the processes of cave colonization by terrestrial faunas. Oecologia Aquatica 10:325–35.Google Scholar
Bellon, R. 2001. Joseph Dalton Hooker's ideals for a professional man of science. Journal of the History of Biology 34:51–82.CrossRefGoogle Scholar
Benedetti-Cecchi, L., Airoldi, L., Abbiati, M. & Cinelli, F.. 1998. Spatial variability in the distribution of sponges and cnidarians in a sublittoral marine cave with sulphur-water springs. Journal of the Marine Biological Association of the United Kingdom 78:43–58.CrossRefGoogle Scholar
Benoit, J. B., Yoder, J. A., Zettler, L. W. & Hobbs, H. H.. 2004. Mycoflora of a trogloxenic cave cricket, Hadenoecus cumberlandicus (Orthoptera: Rhaphidophoridae), from two small caves in Northeastern Kentucky. Annals of the Entomological Society of America 97:989–93.CrossRefGoogle Scholar
Benton, M. J. 1983. Dinosaur success in the Triassic: a noncompetitive ecological model. Quarterly Review of Biology 58:29–55.CrossRefGoogle Scholar
Berg, L. S. 1926. Nomogenesis; or, Evolution determined by Law. London: Constable.Google Scholar
Bergson, H. 1907. L'Evolution Créatrice. Paris: Félix Alcan.Google Scholar
Bernasconi, R. 1999. Paladilhia bessoni n.sp. (Gastropoda Prosobranchia Hydrobiidae) from karstic groundwater of Haute Soule, Pyrenees Atlantiques, France. Revue Suisse de Zoologie 106:385–92.CrossRefGoogle Scholar
Berra, T. M. & Humphrey, J. D.. 2002. Gross anatomy and histology of the hook and skin of forehead brooding male nurseryfish, Kurtus gulliveri, from northern Australia. Environmental Biology of Fishes 65:263–70.CrossRefGoogle Scholar
Berry, R. J. 1989. Ecology: where genes and geography meet. Presidential address to the British Ecological Society, December 1988. Journal of Animal Ecology 58:733–59.CrossRefGoogle Scholar
Besson, J. 1569 [1969]. L'art et Science de Trouver les Eaux et Fontaines Cachees sous Terre: Autrement que par les Moyens Vulgaires des Agriculteurs et Architectes. Orléans: E. Gibier. [Facsimile reproduction by Editions Coral, Columbus, OH.]Google Scholar
Besuchet, C. 1981. Description of Scydmaenus aelleni, a new species of cavernicolous scydmaenid beetle from New Caledonia. Revue Suisse de Zoologie 88:459–62.CrossRefGoogle Scholar
Bichuette, M. E. & Trajano, E.. 2003a. Epigean and subterranean ichthyofauna from the São Somingos karst area, Upper Tocantins River basin, Central Brazil. Journal of Fish Biology 63:1100–21.CrossRefGoogle Scholar
Bichuette, M. E. & Trajano, E.. 2003b. A population study of epigean and subterranean Potamolithus snails from southeast Brazil (Mollusca: Gastropoda: Hydrobiidae). Hydrobiologia 505:107–17.CrossRefGoogle Scholar
,Biota Environmental Sciences Pty Ltd (BESPL). 2005. Barrow Island Gorgon Gas Development. North Perth, Western Australia, Australia: Biota Environmental Sciences Pty Ltd.Google Scholar
Blanc, M., Banarescu, P., Gaudet, J.-L. & Hureau, J. C.. 1971. European Inland Water Fish. A Multilingual Catalogue. London: Fishing News (Book) Ltd.Google Scholar
Blaszak, C., Cokendolpher, J. C. & Polyak, V. J.. 1995. Paleozercon cavernicolous, n.gen., n. sp., fossil mite from a cave in the southwestern U.S.A. (Acari, Gamasida, Zerconidae), with a key to neartic genera of Zerconidae. International Journal of Acarology 21:253–9.CrossRefGoogle Scholar
Blavoux, B. & Mudry, J.. 1986. Influence of the summer rainfalls on the quality of the reserves of the karstic aquifers – the effect of the soil and of the epikarst in the concentration of chlorides. Bulletin de la Societé Geologique de France 2:667–74.CrossRefGoogle Scholar
Bocking, S. 1988. Alpheus Spring Packard and cave fauna in the evolution debate. Journal of the History of Biology 21:425–56.CrossRefGoogle Scholar
Bodon, M., Cianfanelli, S., Talenti, E., Manganelli, G. & Giusti, F.. 1999. Litthabitella chilodia (Westerlund, 1886) in Italy (Gastropoda: Prosobranchia: Hydrobiidae). Hydrobiologia 411:175–89.CrossRefGoogle Scholar
Boero, F., Cicogna, F., Pessani, D. & Pronzato, R.. 1991. In situ observations on contraction behavior and diel activity of Halcampoides purpurea var. mediterranea (Cnidaria, Anthozoa) in a marine cave. Marine Ecology 12:185–92.CrossRefGoogle Scholar
Boesgaard, T. & Kristensen, R. 2001. Tardigrades from Australian marine caves. With a redescription of Actinarctus neretinus (Arthrotardigrada). Zoologischer Anzeiger 240:253–64.CrossRefGoogle Scholar
Boltovskoy, D., Gibbons, M. J., Hutchings, L. & Binet, D.. 1999. General biological features of the South Atlantic, pp. 1–42, in: Boltovskoy, D. (ed.). Zooplankton of the South Atlantic. Leiden: Backhuys Publishers.Google Scholar
Bosque, C. & Parra, O.. 1992. Digestive efficiency and rate of food passage in oilbird nestlings. Condor 94:557–71.CrossRefGoogle Scholar
Boucquey, C., Thines, G. & Borght, C.. 1965. Étude comparative de la capacité photopathique et de l'activité chez le poisson cavernicole Anoptichthys antrobius, chez la forme epigee ancestrale Astyanax mexicanus, et chez les hybrides F1 (Astyanax × Anoptichthys) et F2, pp. 79–103, in: Mendioni, J. (ed.). La Distribution Temporelle des Activités Animales et Humaines. Paris: Masson et Cie.Google Scholar
Bourdier, F. 1971. Cuvier, Georges, pp. 521–8, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography. vol. 3. New York: Scribner.Google Scholar
Bourdier, F. 1972a. Gaudry, Albert Jean, pp. 295–7, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography. vol. 5. New York: Scribner.Google Scholar
Bourdier, F. 1972b. Geoffroy Saint-Hilaire, Ėtienne, pp. 355–8, in: Dictionary of Scientific Biography (Gillispie, C. C., ed.), vol. 5. New York: Scribner.Google Scholar
Bourges, F., Genthon, P., Margin, A. & D'Hulst, D.. 2006. Microclimates of l'Aven d'Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas). International Journal of Climatology 26:1651–70.CrossRefGoogle Scholar
Boutin, C. & Coineau, N.. 2000. Evolutionary rates and phylogenetic age in some stygobiontic species, pp. 433–51, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.). Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Bowie, M. H., Hodge, S., Banks, J. C. & Vink, C. J.. 2006. An appraisal of simple tree-mounted shelters for non-lethal monitoring of weta (Orthoptera: Anostostomatidae and Rhaphidophoridae) in New Zealand nature reserves. Journal of Insect Conservation 10:261–8.CrossRefGoogle Scholar
Bowler, P. J. 1983. The eclipse of Darwinism. Anti-Darwinian Evolution Theories in the Decades around 1900. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Bowler, P. J. 2005. Revisiting the eclipse of Darwinism. Journal of the History of Biology 38:19–32.CrossRefGoogle ScholarPubMed
Bowman, T. E., Yager, J. & Iliffe, T. M.. 1985. Speonebalia cannoni, n. gen., n. sp., from the Caicos Islands, the first hypogean leptostracan (Nebaliacea: Nebaliidae). Proceedings of the Biological Society of Washington 98:439–46.Google Scholar
Boxshall, G. A. & Jaume, D.. 2000. Discoveries of cave misophrioids (Crustacea: Copepoda) shed new light on the origin of anchialine faunas. Zoologischer Anzeiger 239:1–19.Google Scholar
Boyer, D. G. & Pasquarell, G. C.. 1996. Agricultural land use effects on nitrate concentrations in a mature karst aquifer. Water Resources Bulletin 32:565–73.CrossRefGoogle Scholar
Boyer, D. G. & Pasquarell, G. C.. 1999. Agricultural land use impacts on bacterial water quality in a karst groundwater aquifer. Journal of the American Water Resources Association 35:291–300.CrossRefGoogle Scholar
Brancelj, A. 2000. Morariopsis dumonti n.sp (Crustacea: Copepoda: Harpacticoida) – a new species from an unsaturated karstic zone in Slovenia. Hydrobiologia 463: 23–80.Google Scholar
Brancelj, A. 2006. The epikarst habitat in Slovenia and the description of a new species. Journal of Natural History 40:403–13.CrossRefGoogle Scholar
Braun-Blanquet, J. 1928. Pflanzensoziologie. Grundzuge der Vegetationskunde. Berlin: Springer.Google Scholar
Breder, C. M. 1942. Descriptive ecology of La Cueva Chica, with especial reference to the blind fish, Anoptichthys. Zoologica 27:7–15.Google Scholar
Breder, C. M. & Gresser, E. B.. 1941. Correlations between structural eye defects and behavior in the Mexican blind characin. Zoologica 26:123–31.Google Scholar
Briggler, J. T. & Puckette, W. L.. 2003. Observations on reproductive biology and brooding behavior of the Ozark zigzag salamander, Plethodon angusticlavius. The Southwestern Naturalist 48:96–100.2.0.CO;2>CrossRefGoogle Scholar
Brindle, A. 1980. The cavernicolous fauna of Hawaiian lava tubes 12. A new blind troglobitic earwig Anisolabis howarthi, new species (Dermaptera, Carcinophoridae) with a revision of the related surface living earwigs of the Hawaiian Islands USA. Pacific Insects 21:261–74.Google Scholar
Brodsky, L. I., Jacob-Hirsch, J., Avivi, A.et al. 2005. Evolutionary regulation of the blind subterranean mole rat, Spalax, revealed by genome-wide gene expression. Proceedings of the National Academy of Sciences of the United States of America 102:17047–52.CrossRefGoogle ScholarPubMed
Bronson, F. H. 1979. The reproductive ecology of the house mouse. Quarterly Review of Biology 54:265–99.CrossRefGoogle ScholarPubMed
Brooks, W. K. 1909. Biographical memoir of Alpheus Hyatt (1838–1902). Biographical Memoirs of the National Academy of Sciences (USA) 6:311–25.Google Scholar
Brown, J. S. 1990. Habitat selection as an evolutionary game. Evolution 44:732–46.CrossRefGoogle ScholarPubMed
Bruce, R. C. 1979. Evolution of paedomorphosis in salamanders of the genus Gyrinophilus. Evolution 33:998–1000.CrossRefGoogle ScholarPubMed
Brunet, A. K. & Medellin, R. A.. 2001. The species-area relationship in bat assemblages of tropical caves. Journal of Mammalogy 82:1114–22.2.0.CO;2>CrossRefGoogle Scholar
Brusca, R. C. & Brusca, G. J.. 1990. Invertebrates. Sunderland, MA: Sinauer.Google Scholar
Buchanan, J. 1936. Notes on an American cave flatworm, Sphalloplana percaeca (Packard). Ecology 17:194–211.CrossRefGoogle Scholar
Budel, B., Wessels, D. C. J. & Mollenhauer, D.. 1993. Mass development of Nostoc microscopicum (Carmichael) Harvey ex Bornet and Flahault in a cave in Clarens-Sandstone of the Drakensberg Mountains, South Africa (Golden Gate Highlands National Park). Archiv für Protistenkunde 143:229–35.CrossRefGoogle Scholar
Buffenstein, R. 1996. Ecophysiological responses to a subterranean habitat; a Bathyergid perspective. Mammalia 60:591–605.CrossRefGoogle Scholar
Buhlmann, K. 2001. A biological inventory of eight caves in northwestern Georgia with conservation implications. Journal of Cave and Karst Studies 63:91–8.Google Scholar
Burda, H., Begall, S., Grutjen, O. & Scharff, A.. 1999. How to eat a carrot? Convergence in the feeding behavior of subterranean rodents. Naturwissenschaften 86:325–7.CrossRefGoogle Scholar
Burkhardt, F. & Smith, S. (eds.). 1987. The Correspondence of Charles Darwin. Volume 3. 1844–1846. Cambridge: Cambridge University Press.
Burkhardt, F. & Smith, S. (eds.). 1989. The Correspondence of Charles Darwin. Volume 5. 1851–1855. Cambridge: Cambridge University Press.
Burkhardt, F. & Smith, S. (eds.). 1990. The Correspondence of Charles Darwin. Volume 6. 1856–1857. Cambridge: Cambridge University Press.
Burkhardt, R. W. 1977. The Spirit of the System. Lamarck and Evolutionary Biology. Cambridge, MA: Harvard University Press.Google Scholar
Burney, D. A., McCloskey, D., Kikushi, D.et al. 2001. Fossil evidence for a diverse biota from Kaua'i and its transformation since human arrival. Ecological Monographs 71:615–41.Google Scholar
Burr, B. M., Adams, G. L., Krejca, J. K., Paul, R. J. & Warren, Jr M. L.. 2001. Troglomorphic sculpins of the Cottus carolinae species group in Perry County, Missouri: distribution, external morphology, and conservation status. Environmental Biology of Fishes 62:279–96.CrossRefGoogle Scholar
Bussotti, S., Guidetti, P. & Belmonte, G.. 2003. Distribution patterns of the cardinal fish, Apogon imberbis, in shallow marine caves in southern Apulia (SE Italy). Italian Journal of Zoology 70:153–7.CrossRefGoogle Scholar
Bussotti, S., Terlizzi, A., Fraschetti, S., Belmonte, G. & Boero, F.. 2006. Spatial and temporal variability of sessile benthos in shallow Mediterranean marine caves. Marine Ecology Progress Series 325:109–19.CrossRefGoogle Scholar
Byers, G. W. 1969. Evolution of wing reduction in crane flies (Diptera: Tipulidae). Evolution 23:346–54.Google Scholar
Calaforra, J. M., Fernández-Cortés, A., Sánchez-Martos, F., Gisbert, J. & Pulido-Bosch, A.. 2003. Environmental control for determining human impact and permanent visitor capacity in a potential show cave before tourist use. Environmental Conservation 30:160–7.CrossRefGoogle Scholar
Calder, D. R. & Bleakney, J. S.. 1965. Microarthropod ecology of a porcupine-inhabited cave in Nova Scotia. Ecology 46:895–9.CrossRefGoogle Scholar
Calò, F. & Parise, M.. 2006. Evaluating the human disturbance to karst environments in southern Italy. Acta Carsologica 35:47–56.CrossRefGoogle Scholar
Camp, C. D. & Jensen, J. B.. 2007. Use of twilight zones of caves by Plethodontid salamanders. Copeia 2007:594–604.CrossRefGoogle Scholar
Campbell Grant, E. H., Lowe, W. H. & Fagan, W. F.. 2007. Living in the branches: population dynamics and ecological processes in dendritic networksEcology Letters 10:165–75.CrossRefGoogle ScholarPubMed
Canaveras, J. C., Sanchez-Moral, S., Soler, V. & Saiz-Jimenez, C.. 2001. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiology Journal 18:223–40.Google Scholar
Carey, P. G., Sargent, A. J., Taberner, A. M., Ramon, G. & Moya, G.. 2001. Ecology of cavernicolous ciliates from the anchihaline lagoons of Mallorca. Hydrobiologia 448:193–201.CrossRefGoogle Scholar
Carpenter, J. H. 1970. Systematics and ecology of cave planarians of the United States. American Zoologist 10:543.Google Scholar
Carr, J. 1973. Lister, Martin, pp. 415–17, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography. vol. 8. New York: Scribner.Google Scholar
Casale, A., Giachino, P. M., & Jalzic, B.. 2004. Three new species and one new genus of ultraspecialized cave dwelling Leptodirinae from Croatia (Coleoptera, Cholevidae). Natura Croatica 13:301–17.Google Scholar
Castleberry, S. B., Ford, W. M., Wood, P. B., Castleberry, N. L. & Mengak, M. T.. 2001. Movements of Allegheny woodrats in relation to timber harvesting. Journal of Wildlife Management 65:148–56.CrossRefGoogle Scholar
Causey, N. B. & Tiemann, D. L.. 1969. A revision of the bioluminescent millipedes of the genus Motyxia (Xystodesmidae, Polydesmida). Proceedings of the American Philosophical Society 113:14–33.Google Scholar
Chakraborty, R. & Nei, M.. 1974. Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theoretical Population Biology 5:460–9.CrossRefGoogle ScholarPubMed
Chamberlin, J. C. & Malcolm, D. R.. 1960. The occurrence of false scorpions in caves with special reference to cavernicolous adaptation and to cave species in the North American fauna (Arachnida-Chelonethida). American Midland Naturalist 64:105–15.CrossRefGoogle Scholar
Chelius, M. K. & Moore, J. C.. 2004. Molecular phylogenetic analysis of archaea and bacteria in Wind Cave, South Dakota. Geomicrobiology Journal 21:123–34.CrossRefGoogle Scholar
Chen, Y.-R., Yang, J.-X. & Zhu, Z. G.. 1994. A new fish of the genus Sinocyclocheilus from Yunnan with comments on its characteristic adaptation (Cypriniformes: Cyprinidae). Acta Zootaxonomica Sinica 19:246–53.Google Scholar
Chevaldonné, P. & Lejeune, C.. 2003. Regional warming-induced species shift in north-west Mediterranean marine caves. Ecology Letters 6:371–9.CrossRefGoogle Scholar
Chopard, L. 1928. Sur une gravure d'insecte de l'epoque magdalénienne. Comptes Rendus de la Societé de Biogeographie 5:64–7.Google Scholar
Christian, E. 2005. Palpigradi (micro-whipscorpions), arachnids in a lightless world. Denisia 2004 (12):473–83.Google Scholar
Christiansen, K. A. 1962. Proposition pour la classification des animaux cavernicoles. Spelunca Memoires 2:76–8.Google Scholar
Christiansen, K. A. 1965. Behavior and form in the evolution of cave Collembola. Evolution 19:529–37.CrossRefGoogle Scholar
Christiansen, K. A. 1992. Biological processes in space and time. Cave life in the light of modern evolutionary theory, pp. 453–78, in: Camacho, A. I. (ed.). Monogr. 7, The Natural History of Biospeleology. Madrid: Museo Nacional de Ciencias Naturales.Google Scholar
Christiansen, K. & Culver, D.. 1987. Biogeography and the distribution of cave Collembola. Journal of Biogeography 14:459–77.CrossRefGoogle Scholar
Christman, M. C., Culver, D. C., Madden, M. K. & White, D.. 2005. Patterns of endemism of the eastern North America cave fauna. Journal of Biogeography 32:1441–52.CrossRefGoogle Scholar
Cianficconi, F., Romano, C. & Salerno, P.. 2001. Checklist dei Tricotteri del Parco di Monte Cucco (Umbria, PG). Rivista di Idrobiologia 40:379–400.Google Scholar
Ciarniello, L. C., Boyce, M. S., Heard, D. C. & Seip, D. R.. 2005. Denning behavior and den site selection of grizzly bears along the Parsnip River, British Columbia, Canada. Ursus 16:47–58.CrossRefGoogle Scholar
Cigna, A. A. 1993a. Speleology by Titus Lucretius Carus. Atti del Simposio Internazionale sulla Protostoria della Speleologia. Città di Castello, Italy: Edizioni Nuova Prhomos.Google Scholar
Cigna, A. A. 1993b. Environmental-management of tourist caves – the examples of Grotta di Castellana and Grotta Grande del Vento, Italy. Environmental Geology 21:173–80.CrossRefGoogle Scholar
Clark, B. K., & Clark, B. S.. 1994. Use of caves by eastern woodrats (Neotoma floridana) in relation to bat populations, internal cave characteristics and surface habitats. American Midland Naturalist 131:359–64.CrossRefGoogle Scholar
ClarkJr., D. R., Clawson, R. L. & Stafford, C. J.. 1983. Gray bats killed by Dieldrin at two additional Missouri caves: aquatic microinvertebrates found dead. Bulletin of Environmental Contamination and Toxicology 30:214–18.CrossRefGoogle Scholar
ClarkJr., D. R., LaVal, R. K. & Krynitsky, A. J.. 1980. Dieldrin and Heptachlor residues in dead gray bats, Franklin County, Missouri – 1976 versus 1977. Pesticides Monitoring Journal 13:137–40.Google ScholarPubMed
Clark, D. R.., LaVal, R. K. & Swineford, D. M.. 1978. Dieldrin-induced mortality in an endangered species, the Gray Bat (Myotis grisaceus). Science 199:1357–9.CrossRefGoogle Scholar
Clark, G. R., Petchey, P., McGlone, M. S. & Bristow, P.. 1996. Faunal and floral remains from Earnscleugh cave, central Otago, New Zealand. Journal of the Royal Society of New Zealand 26:363–80.CrossRefGoogle Scholar
Clayton, D. H., Price, R. D. & Page, R. D. M.. 1996. Revision of Dennyus (Collodennyus) lice (Phthiraptera: Menoponidae) from swiftlets, with descriptions of new taxa and a comparison of host-parasite relationships. Systematic Entomology 21:179–204.CrossRefGoogle Scholar
Clements, R., Sodhi, N. S., Schilthuizen, M. & Ng, P. K. L.. 2006. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience 56:733–42.CrossRefGoogle Scholar
Clottes, J. 2003. Return to Chauvet Cave: Excavating the Birthplace of Art: the First Full Report. London: Thames and Hudson.Google Scholar
Coddington, J. A. 2005. Phylogeny and classification of spiders, pp. 18–24, in: Ubick, D., Paquin, P., Cushing, P. E. & Roth, V. (eds.). Spiders of North America: an Identification Manual. Poughkeepsie, NY: American Arachnological Society.Google Scholar
Coleman, M. J. & Hynes, H. B. N.. 1970. The vertical distribution of the invertebrate fauna in the bed of a stream. Limnology and Oceanography 15:31–40.CrossRefGoogle Scholar
Coleman, W. 1964. Georges Cuvier, Zoologist: a Study in the History of Evolution Theory. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Collazo, A. & Marks, S. B.. 1994. Development of Gyrinophilus porphyriticus: identification of the ancestral developmental pattern in the salamander family Plethodontidae. Journal of Experimental Zoology 268:239–58.CrossRefGoogle Scholar
Colp, R. 1986. “Confessing a murder”: Darwin's first revelations about transmutation. Isis 77:9–32.CrossRefGoogle ScholarPubMed
Coma, R., Carola, M., Riera, T. & Zabala, M.. 1997. Horizontal transfer of matter by a cave-dwelling mysid. Marine Ecology. Pubblicazioni della Stazione Zoologica di Napoli 18:211–26.CrossRefGoogle Scholar
Condorcet, J.-A. N.. 1793–4. Esquisse d'un Tableau Historique des Progrès de l'Esprit Human. Paris: Agasse.Google Scholar
Condorcet, J.-A. N. de C. 1802. Outlines of an Historical View of the Progress of the Human Mind, being a Posthumous Work of the late M. de Condorcet. Baltimore, MD: G. Fryer, for J. Frank.Google Scholar
Cook, G. 1975. Cave-dwelling aquatic Oligochaeta (Annelida) from eastern United States. Transactions of the American Microscopical Society 94:24–37.CrossRefGoogle Scholar
Cooper, H. M., Herbin, M & Nevo, E.. 1993. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. Journal of Comparative Neurology 328:313–50.CrossRefGoogle ScholarPubMed
Cooper, J. E. & Kuhene, R. A.. 1974. Speoplatyrhynus poulsoni, a new genus and species of subterranean fish from Alabama. Copeia 1974:486–93.CrossRefGoogle Scholar
Cooper, R. L., Li, H., Long, Y., Cole, J. L. & Hopper, H. L.. 2001. Anatomical comparisons of neural systems in sighted epigean and troglobitic crayfish species. Journal of Crustacean Biology 21:360–74.CrossRefGoogle Scholar
Cope, E. D. 1864. On a blind silurid from Pennsylvania. Proceedings of the Academy of Natural Sciences of Philadelphia 1864:231–3.Google Scholar
Cope, E. D. 1872. On the Wyandotte Cave and its fauna. American Naturalist 6:406–22.CrossRefGoogle Scholar
Cope, E. D. 1896. The Primary Factors of Organic Evolution. Chicago, IL: Open Court.Google Scholar
Corbera, J. 2002. Amphi-Atlantic distribution of the Mancocimatinae (Cumacea: Bodotriisae), with description of a new genus dwelling in marine lava caves of Tenerife (Canary Islands). Zoological Journal of the Linnean Society 134:453–61.CrossRefGoogle Scholar
Corsi, P. 2005. Before Darwin: transformist concepts in European natural history. Journal of the History of Biology 38:67–83.CrossRefGoogle ScholarPubMed
Covelli, S., Cucchi, F. & Mosca, R.. 1998. Monitoring of percolation water to discriminate surficial inputs in a karst aquifer. Environmental Geology 36:296–304.CrossRefGoogle Scholar
Crispim, J. A. 1999. Seismotectonic versus man-induced morphological changes in a cave on the Arrabida chain (Portugal). Geodinamica Acta 12:135–42.CrossRefGoogle Scholar
Crouau-Roy, B., Crouau, Y. & Ferre, C.. 1992. Dynamic and temporal structure of the troglobitic beetle Speonomus hydrophilus (Coleoptera: Bathysciinae). Ecography 15:12–18.CrossRefGoogle Scholar
Crouch, D. P. 1993. Water Management in Ancient Greek Cities. New York: Oxford University Press.Google Scholar
Crouch, D. P. 2004. Geology and Settlement. Greco-Roman Patterns. Oxford: Oxford University Press.Google Scholar
Crum, H. 1983. Mosses of the Great Lakes. Ann Arbor, MI: University of Michigan Herbarium.Google Scholar
Crunkilton, R. 1984. Subterranean contamination of Maramec Spring by ammonium nitrate and urea fertilizer and its implications for rare cave biota. Missouri Speleology 25:151–9.Google Scholar
Cuénot, L. 1911. La Genesis de las Especes Animals. Paris: Librairie Félix Alcan.Google Scholar
Culver, D. C. 1970. Analysis of simple cave communities I. Caves as islands. Evolution 24:463–74.CrossRefGoogle ScholarPubMed
Culver, D. C. 1971. Analysis of simple cave communities. III. Control and abundance. American Midland Naturalist 85:173–87.CrossRefGoogle Scholar
Culver, D. C. & Holsinger, J. R.. 1992. How many species of troglobites are there? National Speleological Society Bulletin 54:79–80.Google Scholar
Culver, D., Holsinger, J. R. & Baroody, R.. 1973. Toward a predictive cave biogeography: the Greenbriar Valley as a case study. Evolution 27:689–95.CrossRefGoogle Scholar
Culver, D. C., Kane, T. C. & Fong, D. W.. 1995. Adaptation and Natural Selection in Caves. The Evolution of Gammarus minus. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Culver, D. C., Lawrence, L. M., Christman, M. C. & Hobbs, H. H.. 2000. Obligate cave fauna of the 48 contiguous United States. Conservation Biology 14:386–401.CrossRefGoogle Scholar
Culver, D. C. & Poulson, T. L.. 1970. Community boundaries: faunal diversity around a cave entrance. Annales Spéléologie 25:853–60.Google Scholar
Culver, D. & White, W.. 2005. Encyclopedia of Caves. Amsterdam: Elsevier.Google Scholar
Cunningham, J. A., Hopkins, G. D., Lebron, C. A. & Reinhard, M.. 2000. Enhanced anaerobic bioremediation of groundwater contaminated by fuel hydrocarbons at Seal Beach, California. Biodegradation 11:159–70.CrossRefGoogle ScholarPubMed
Cunningham, K. I., Northup, D. E., Pollastro, R. M., Wright, W. G. & LaRock, R. J.. 1995. Bacteria, fungi, and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environmental Geology 25:2–8.CrossRefGoogle Scholar
Danielli, H. M. C. & Edington, M. A.. 1983. Bacterial calcification in limestone caves. Geomicrobiology Journal 3:1–16.CrossRefGoogle Scholar
Danielopol, D. L., Baltanás, A. & Humphreys, W. F.. 2000. Danielopolina kornickeri sp. n. (Ostracoda, Thaumatocypridoidea) from a western Australian anchialine cave: morphology and evolution. Zoologica Scripta 29:1–16.CrossRefGoogle Scholar
Danielopol, D. L., Griebler, C., Gunatilaka, A. & Notenboom, J.. 2003. Present state and future prospects for groundwater ecosystems. Environmental Conservation 30:104–30.CrossRefGoogle Scholar
Darlington, P. J. 1943. Carabidae of mountains and islands: data on the evolution of isolated faunas, and on atrophy of wings. Ecological Monographs 13:37–61.CrossRefGoogle Scholar
Darwin, C. 1859. On the Origin of the Species by Means of Natural Selection. London: J. Murray.Google Scholar
Darwin, C. 1861. On the Origin of the Species by Means of Natural Selection (3rd edn.). London: J. Murray.Google Scholar
Darwin, F. 1896. The Life and Letters of Charles Darwin. New York: D. Appleton and Company.Google Scholar
Daubrée, A. 1887. Eaux Souterraines a l'Epoque Actuelle. Paris: Dunod.Google Scholar
Davidson, J. P. 1997. The Bone Sharp. The Life of Edward Drinker Cope. Philadelphia, PA: The Academy of Natural Sciences of Philadelphia.Google Scholar
Davis, P. G. 1997. The bioerosion of bird bones. International Journal of Osteoarchaeology 7:388–401.3.0.CO;2-H>CrossRefGoogle Scholar
Day, M. J. & Chenoweth, M. S.. 2004. The karstlands of Trinidad and Tobago, their land use and conservation. Geographical Journal 170:256–66.CrossRefGoogle Scholar
Beer, G. 1973. Lankester, Edwin. Ra., pp. 26–27, in: Gillispie, C.C. (ed.) Dictionary of Scientific Biography, vol. 8. New York: Scribner.Google Scholar
Candolle, A. P. 1813. Théorie Élémentaire de la Botanique; ou, Exposition des Principes de la Classification Naturelle et de l'Art de Décrire et d'Étudier les Végétaux. Paris: Déterville.Google Scholar
Chardin, T. 1955. Le Phénomène Humain. Paris: Du Seuill.Google Scholar
DeKay, J. E. 1842. Zoology of New York or the New-York Fauna, Part IV, Fishes. Albany, NY: W. & A. White & J. Visscher.Google Scholar
Deharveng, L. & Bedos, A.. 2000. The cave fauna of southeast Asia. Origin, evolution and ecology, pp. 603–32, in: Wilkens, H., Culver, D. C. & Humphries, W.F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Denis, A., Lastennet, R., Huneau, F. & Makaurent, P.. 2005. Identification of functional relationships between atmospheric pressure and CO2 in the cave of Lascaux using the concept of entropy of curves. Geophysical Research Letters 32 (5):Art. No. L05810.CrossRefGoogle Scholar
Desimone, L. R. L. & Moracchiolin, N.. 1994. Hydrobiidae (Gastropoda, Hydrobioidea) from the Ribeira valley, Se Brazil, with descriptions of 2 new cavernicolous species. Journal of Molluscan Studies 60:445–59.Google Scholar
Desmond, R. 1972. Hooker, Joseph Dalton, pp. 488–92, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 6. New York: Scribner.Google Scholar
Dexter, R. W. 1965. The “Salem secession” of Agassiz zoologists. Essex Institute Historical Collections 101:27–39.Google Scholar
Dexter, R. W. 1979. The impact of evolutionary theories on the Salem Group of Agassiz Zoologists (Morse, Hyatt, Packard, Putnam). Essex Institute Historical Collections 115:144–71.Google Scholar
Dhondt, J. L. & Harmelin, J. G.. 1993. Redescription of Alcyonidum duplex Prouho, 1892 (Bryozoa, Ctenostomida). Description and ecology. Cahiers de Biologie Marine 34:65–75.Google Scholar
Diamond, J. & Stermer, D.. 1999. Evolving backward. Discover 19:64–8.Google Scholar
Dill, R. F., Land, L. S., Mack, L. E. & Schwartz, H. P.. 1998. A submerged stalactite from Belize: petrography, geochemistry, and geochronology of massive marine cementation. Carbonates and Evaporites 13:189–97.CrossRefGoogle Scholar
Dimichele, W. A., Phillips, T. L., & Olmstead, R. G.. 1987. Opportunistic evolution: abiotic environmental stress and the fossil record of plants. Review of Palaeobotany and Palynology 50:151–78.CrossRefGoogle Scholar
Dirig, R. 1994. Lichens of pine-barrens, dwarf pine plains, and ice-cave habitats in the Shawangunk Mountains, New York. Mycotaxon 52:523–58.Google Scholar
Dobzhansky, T. 1968. Teilhard de Chardin and the orientation of evolution. Zygon 3:242–58.CrossRefGoogle Scholar
Dobzhansky, T. 1970. Genetics of the Evolutionary Process. New York: Columbia University Press.Google Scholar
Doolittle, R. F. 1988. Lens proteins. More molecular opportunism. Nature 336:18.CrossRefGoogle ScholarPubMed
Doran, N. E., Richardson, A. M. M. & Swain, R.. 2001. The reproductive behaviour of the Tasmanian cave spider Hickmania troglodytes (Araneae: Austrochilidae). Journal of Zoology 253:405–18.CrossRefGoogle Scholar
Dove, S., Ortiz, J. C., Enriquez, S.et al. 2006. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnology and Oceanography 51:1149–58.CrossRefGoogle Scholar
Dowling, T. E., Martasian, D. P. & Jeffery, W. R.. 2002. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus. Molecular Biology and Evolution 19:446–55.CrossRefGoogle ScholarPubMed
Ducarme, X., André, H. M., Wauthy, G. & Lebrun, P.. 2004a. Comparison of endogeic and cave communities: microarthropod density and mite species richness. European Journal of Soil Biology 40:129–38.CrossRefGoogle Scholar
Ducarme, X., Wauthy, G., Andre, H. M. & Lebrun, P.. 2004b. Survey of mites in caves and deep soil and evolution of mites in these habitats. Canadian Journal of Zoology 82:841–50.CrossRefGoogle Scholar
Dumnicka, E. 2005. Worms, pp. 614–18, in: Culver, D. & White, W. (eds.) Encyclopedia of Caves. Amsterdam: Elsevier.Google Scholar
Dumnicka, E. & Wojtan, K.. 1990. Differences between cave water ecological-systems in the Krakow Czestochowa upland. Stygologia 5:241–7.Google Scholar
Dumont, H. J. 1995. The evolution of groundwater Cladocera. Hydrobiologia 307:69–74.CrossRefGoogle Scholar
Dumont, H. J. & Negrea, S.. 1996. A conspectus of the Cladocera of the subterranean waters of the world. Hydrobiology 325:1–30.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J. & Martinez, N. D.. 2002. Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America 99:12917–22.CrossRefGoogle ScholarPubMed
Eddy, J. H. 1994. Buffon's Histoire naturelle. History? A critique of recent interpretations. Isis 85:644–61.CrossRefGoogle ScholarPubMed
Edgecombe, G. D. 2006. A troglobitic cryptopid centipede (Chilopoda: Scolopendromorpha) from western Queensland. Record of the Australian Museum 23:193–8.CrossRefGoogle Scholar
Eigenmann, C. H. 1890. The Point Loma blind fish and its relatives. Zoe 1:65–96.Google Scholar
Eigenmann, C. H. 1898. A new blind fish. Proceedings of the Indiana Academy of Sciences 897:231.Google Scholar
Eigenmann, C. H. 1903. In search of blind fishes in Cuba. World Today 5:1131–6.Google Scholar
Eigenmann, C. H. 1909. Cave Vertebrates of America. A Study in Degenerative Evolution. Washington, D.C.: Carnegie Institution of Washington.Google Scholar
Eigenmann, C. H. 1919. Trogloglanis pettersoni, a new blind fish from San Antonio, Texas. Proceedings of the American Philosophical Society 58:397–400.Google Scholar
Eimer, T. 1887–1888. Die Entstehung der Arten auf Grund von Vererben erwobener Eigenschaften nach den Gesetzen organischen Wachsens. Ein Beitrag zur einheitlichen Auffassung der Lebewelt. Jena: G. Fischer.Google Scholar
Emberton, K. C., Pearce, T. A., Kasigwa, P. F., Tattersfield, P. & Habibu, Z.. 1997. High diversity and regional endemism in land snails of eastern Tanzania. Biodiversity and Conservation 6:1123–36.CrossRefGoogle Scholar
Emmett, A. J. & Telfer, A. L.. 1994. Influence of karst hydrology on water-quality management in southeast South-Australia. Environmental Geology 23:149–55.CrossRefGoogle Scholar
Endler, J. A. 1986. Natural Selection in the Wild. Princeton, NJ: Princeton University Press.Google Scholar
Engel, A. S., Porter, M. L., Kinkle, B. K. & Kane, T. C.. 2001. Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiology Journal 18:259–74.Google Scholar
Engel, A. S., Porter, M. L., Stern, L. A., Quinlan, S. & Bennett, P. C.. 2004a. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) suflidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiological Ecology 51:31–53.CrossRefGoogle ScholarPubMed
Engel, A. S., Stern, L. A. & Bennett, P. C.. 2004b. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32:369–72.CrossRefGoogle Scholar
Erckens, W. & Weber, F.. 1976. Rudiments of an ability for time measurements in cavernicole fish Anoptichthys jordani Hubbs & Innes (Pisces: Characidae). Experientia 32:1297–9.CrossRefGoogle Scholar
Erdbrink, D. P. B. 1983. Eleven bones: more fossil remains of cave lions and cave hyaenas from the North Sea area. Bijdragen tot de Dierkunde 53:1–12.Google Scholar
Erkens, K., Lademan, M., Tintelnot, K.et al. 2002. Histoplasm ose-Gruppenerkrankung bei Fledermausforschern nach Kubaaufenthalt. Deutsche medizinische Wochenschrift 127:21–5.CrossRefGoogle Scholar
Erseus, C. 1986. A new species of Phallodrilus (Oligochaeta, Tubificidae) from a limestone cave on Bermuda. Sarsia 71:7–9.CrossRefGoogle Scholar
Espinasa, L. & Borowsky, R.. 2000. Re-acquisition of the eyed condition in a population of blind cave fish Astyanax fasciatus in a karst window, p. 146, in: Program Book and Abstracts, 80th Annual Meeting of the American Society of Icthyologists and Herpetologists, La Paz, Baja California Sur, Mexico, June 14–20. La Paz, Mexico: American Society of Ichthyologists and Herpetologists.Google Scholar
Espinasa, L. & Fisher, A.. 2006. A cavernicolous species of the genus Anelpistina (Zygentoma: Nicoletiidae) from San Sebastian Cave, Oaxaca, Mexico. Proceedings of the Entomological Society of Washington 108:655–60.Google Scholar
Espinasa, L., Rivas-Manzano, P. & Perez, H. E.. 2001. A new blind cave fish population of genus Astyanax: geography, morphology and behavior. Environmental Biology of Fishes 62:339–44.CrossRefGoogle Scholar
Etnier, D. A. & Starnes, W. E.. 1993. The Fishes of Tennessee. Knoxville, TN: University of Tennessee Press.Google Scholar
Ewan, J. 1975. Rafinesque, Constantine Samuel, pp. 262–4, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 11. New York: Scribner.Google Scholar
Faimon, J., Stelcl, J., Kubesova, S. & Zimak, J.. 2003. Environmentally acceptable effect of hydrogen peroxide on cave “lamp-flora”, calcite speleothems and limestones. Environmental Pollution 122:417–22.CrossRefGoogle Scholar
Fain, A. & Bochkov, A. V.. 2002. A new genus and species of cheyletid mite (Acari: Cheyletidae) from a cave in Western Australia. International Journal of Acarology 28:37–40.CrossRefGoogle Scholar
Farber, P. L. 1975. Buffon and Daubenton: divergent traditions within the Histoire naturelle. Isis 66:63–74.CrossRefGoogle ScholarPubMed
Faust, B. 1967. Saltpere mining in Mammoth Cave, Kentucky. Journal of Spelean History 1:3–9.Google Scholar
Fenolio, D. B., Graening, G. O., Collier, B. A. & Stout, J. F.. 2005a. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proceedings of the Royal Society B273:439–43.CrossRefGoogle Scholar
Fenolio, D. B., Graening, G. O. & Stout, J. F.. 2005b. Seasonal movement patterns of pickerel frogs (Rana palustris) in an Ozark cave and trophic implications supported by stable isotope evidence. Southwestern Naturalist 50:385–9.CrossRefGoogle Scholar
Fenton, M. B. 1975. Acuity of echolocation in Collocalia hirundinacea (Aves: Apodidae), with comment on the distributions of echolocating swiftlets and molossid bats. Biotropica 7:1–7.CrossRefGoogle Scholar
Ferguson, L. M. 1996. Condeicampa langei, new genus and species of Dipluran (Diplura: Campodeidae) from Whipple Cave, Nevada, U.S.A. Memoires de Biospéologie 23:133–41.Google Scholar
Fernández-Cortes, A, Calaforra, J. M. & Sanchez-Martos, F.. 2006a. Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain). Atmospheric Environment 40:7378–94.CrossRefGoogle Scholar
Fernández-Cortes, A., Calaforra, J. M., Sanchez-Martos, F. & Gisbert, J.. 2006b. Microclimate processes characterization of the giant Geode of Pulpi (Almeria, Spain): technical criteria for conservation. International Journal of Climatology 26:691–706.CrossRefGoogle Scholar
Ferreira, R. L. & Martins, R. P.. 1999. Trophic structure and natural history of bat guano invertebrate communities, with special reference to Brazilian caves. Tropical Zoology 12:231–52.CrossRefGoogle Scholar
Ferreira, R., Prous, X. & Martins, R. P.. 2007. Structure of bat guano communities in a dry Brazilian cave. Tropical Zoology 20:55–74.Google Scholar
Fiedler, K. 2001. Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Diversity and Distributions 7:45–60.CrossRefGoogle Scholar
Field, J. 1992. Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees. Biological Reviews 67:79–126.CrossRefGoogle Scholar
Fiers, F., & Iliffe, T. M.. 2000. Nitocrellopsis texana n. sp. from central TX (USA) and N. ahaggarensis n. sp. from the central Algerian Sahara (Copepoda, Harpacticoida). Hydrobiologia 418:81–7.CrossRefGoogle Scholar
Finston, T. L. & Peck, S. B.. 1995. Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galapagos Islands. Heredity 75:390–7.CrossRefGoogle Scholar
Fiorina, A, Olivo, F., Caretta, G., Cassini, P. & Savino, E.. 2000. Study of microfungi and bacteria in the air of a karst cave in Toirano (Savona, Italy). Micologia Italiana 29:65–73.Google Scholar
Fliermans, C. B. & Schmidt, E. L.. 1977. Nitrobacter in Mammoth Cave. International Journal of Speleology 9:1–19.CrossRefGoogle Scholar
Foddai, D. & Minelli, A.. 1999. A troglomorphic geophilomorph centipede from France (Chilopoda: Geophilomorpha: Geophilidae). Journal of Natural History 33:267–87.CrossRefGoogle Scholar
Foissner, W. 2003. Two remarkable soil spathidiids (Ciliophora: Haptorida), Arcuospathidium pachyoplites sp. n. and Spathidium faurefremieti nom. n. Acta Protozoologica 42:145–59.Google Scholar
Foos, A. M., Sasowsky, I. D., Rock, E. J. & Kambesis, P. N.. 2000. Detrital origin of a sedimentary fill, Lechuguilla Cave, Guadalupe Mountains, New Mexico. Clays and Clay Minerals 48:693–8.CrossRefGoogle Scholar
,Foreign Secretary. 1860–1862. Notice of recent scientific researches carried on abroad. Proceedings of the Royal Society of London 11:45–53.CrossRefGoogle Scholar
Forwood, W. S. 1870. An Historical and Descriptive Narrative of the Mammoth Cave of Kentucky: Including Explanations of the Causes Concerned in its Formation, its Atmospheric Conditions, its Chemistry, Geology, Zoology, etc., with Full Scientific Details of the Eyeless Fishes. Philadelphia, PA: J.B. Lippincott & Co.Google Scholar
Fosshagen, A. & Iliffe, T. M.. 2003. Three new genera of the Ridgewayiidae (Copepoda, Calanoida) from anchialine caves in the Bahamas. Sarsia 88:16–35.CrossRefGoogle Scholar
Francé, R. H. 1913. Das Edaphon: Untersuchungen zur Oekologie der bodenbewohnenden Mikroorganismen. München, Germany: Verlag der Deutschen Mikrologischen Gesellschaft.Google Scholar
Fullard, J. H., Aarclay, R. M. R. & Thomas, D. W.. 1993. Echolocation in free-flying atiu swiftlets (Aerodramus sawtelli). Biotropica 25:334–9.CrossRefGoogle Scholar
Furman, A. & Ozgul, A.. 2002. Distribution of cave-dwelling bats and conservation status of underground habitats in the Istanbul area. Ecological Research 17:69–77.CrossRefGoogle Scholar
Futuyma, D. J. 1998. Evolutionary Biology. Sunderland, MA: Sinauer.Google Scholar
Gabriel, R. & Bates, J. W.. 2003. Responses of photosynthesis to irradiance in bryophytes of the Azores laurel forest. Journal of Bryology 25:101–5.CrossRefGoogle Scholar
Galassi, D. P. & Pesce, G. L..1991. Elaphoidella mabelae n. sp., a crenobiont harpacticoid from Italy (Copepoda, Canthocamptidae). Crustaceana 60:1–6.CrossRefGoogle Scholar
Galindo, C., Sanchez, A., Quijano, R.H. & Herrera, L. G.. 2004. Population dynamics of a resident colony of Leptonycteris curasoae (Chiroptera: Phyllostomidae) in central Mexico. Biotropica 36:382–91.Google Scholar
Garbacki, N., Ector, L., Kostikov, I. & Hoffmann, L.. 1999. Contribution to the study of the flora of caves in Belgium. Belgian Journal of Botany 132:43–76.Google Scholar
Gemma, J. N., Koske, R. E. & Flynn, T.. 1992. Mycorrhizae in Hawaiian Pteridophytes: occurrence and evolutionary significance. American Journal of Botany 79:843–52.CrossRefGoogle Scholar
Gentner, D. R. 1968. The scientific basis of some concepts of Pierre Teilhard de Chardin. Zygon 3:432–41.CrossRefGoogle Scholar
Gers, C. 1998. Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecologica 19:205–13.CrossRefGoogle Scholar
Gifford, G. E. 1967. An American in Paris, 1841–1842: four letters from Jefferies Wyman. Journal of the History of Medicine and Allied Sciences 22:274–85.CrossRefGoogle Scholar
Gilbert, J. & Mathieu, J.. 1980. Relations entre les teneurs en proteins, glucides et lipids au cours du jeûne experimental, chez deux espèces de Niphargus peuplant des biotopes differents. Crustaceana (Supplement) 6:137–47.Google Scholar
Gillieson, D., Wallbrink, P. & Cochrane, A.. 1996. Vegetation change, erosion risk and land management on the Nullarbor plain, Australia. Environmental Geology 28:145–53.CrossRefGoogle Scholar
Gillmore, G. K., Sperrin, M., Phillips, P. & Denman, A.. 2000. Radon hazards, geology, and exposure of cave users: a case study and some theoretical perspectives. Ecotoxicology and Environmental Safety 46:279–88.CrossRefGoogle ScholarPubMed
Ginet, R. & Decou, V.. 1977. Initiation à la Biologie et à l'Écologie Souterraines. Paris: Delarge.Google Scholar
Ginzburg, L. & Darnuth, J.. 2008. The space-lifetime hypothesis: viewing organisms in four dimensions, literally. American Naturalist 171:125–31.CrossRefGoogle ScholarPubMed
Girard, C. F. 1859. Ichthyological notes. Proceedings of the Academy of Natural Sciences of Philadelphia 1859:63–4.Google Scholar
Giribet, G., Edgecombe, G. D., Wheler, W. C. & Babbitt, C.. 2002. Phylogeny and systematic position of Opinioles: a combined analysis of Chelicerate relationships using morphological and molecular data. Cladistics 18:5–70.Google ScholarPubMed
Giribet, G. & Ribera, C.. 2000. A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16:204–31.CrossRefGoogle Scholar
Gittleson, S. M. & Hoover, R. L.. 1969. Cavernicolous protozoa – review of the literature and new studies in Mammoth Cave, Kentucky. Annales de Spéléologie 24:737–76.Google Scholar
Glaubrecht, M. 2004. Leopold von Buch's legacy: treating species as dynamic natural entities, or why geography matters. American Malacological Bulletin 19:111–34.Google Scholar
Gnaspini, P. 1996. Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from south-eastern Brazil (Arachnida: Opiliones: Gonyleptidae). Journal of Zoology 239:417–35.CrossRefGoogle Scholar
Gnaspini, P. & Cavalheiro, A. J.. 1998. Chemical and behavioral defenses of a neotropical cavernicolous harvestman: Goniosoma spelaeum (Opiliones, Laniatores, Gonyleptidae). Journal of Arachnology 26:81–90.Google Scholar
Gnaspini, P., Santos, F. H. & Hoenen, S.. 2003. The occurrence of different phase angles between contrasting seasons in the activity patterns of the cave harvestman Goniosoma spelaeum (Arachnida, Opiliones). Biological Rhythm Research 34:31–49.CrossRefGoogle Scholar
Golovatch, S. I., Geoffroy, J. J. & Mauries, J. P.. 2006. Four new Chordeumatida (Diplopoda) from caves in China. Zoosystema 28:75–92.Google Scholar
Golovatch, S. & Wytwer, J.. 2004. The South American millipede genus Phaneromerium Verhoeff. 1941, with the description of a new cavernicolous species from Brazil (Diplopoda: Polydesmida: Fuhrmannodesmidae). Annales Zoologici 54:511–14.Google Scholar
Goldman, C. R. 1960. Primary productivity and limiting factors in three lakes of the Alaska Peninsula. Ecological Monographs 30:207–30.CrossRefGoogle Scholar
Goode, C. E. 1986. World Wonder Saved. How Mammoth Cave became a National Park. Mammoth Cave, KY: The Mammoth Cave National Park Association.Google Scholar
Goodnight, C. J. & Goodnight, M. L.. 1960. Speciation among cave opilionids of the United States. American Midland Naturalist 64:34–8.CrossRefGoogle Scholar
Goudge, T. A. 1973. Bergson, Henri Louis, pp. 8–12, in: Gillispie, C.C. (ed.) Dictionary of Scientific Biography, vol. 2. New York: Scribner.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Gould, S. J. & Vrba, E. S.. 1982. Exaptation – a missing term in the science of form. Paleobiology 8:4–15.CrossRefGoogle Scholar
Graening, G. O. 2003. Subterranean biodiversity of Arkansas, part 2: Status update of the Foushee cavesnail, Amnicola cora Hubricht, 1979 (Mollusca: Gastropoda: Hydrobiidae). Journal of the Arkansas Academy of Science 57:195–6.Google Scholar
Graening, G. O. 2005. Trophic structure of Ozark cave streams containing endangered species. Oceanological and Hydrobiological Studies 34:3–17.Google Scholar
Graening, G. O. & Brown, A. V.. 2003. Ecosystem dynamics and pollution effects in an Ozark cave stream. Journal of the American Water Resources Association 39:1497–507.CrossRefGoogle Scholar
Graening, G. O., Slay, M. E. & Bitting, C.. 2006a. Cave fauna of the Buffalo National River. Journal of Cave and Karst Studies 68:153–63.Google Scholar
Graening, G. O., Slay, M. E., Brown, A. V. & Koppelman, J. B.. 2006b. Status and distribution of the endangered benton cave crayfish, Cambarus aculabrum (Decapoda: Cambaridae). Southwestern Naturalist 51:376–81.CrossRefGoogle Scholar
Granger, G. 1971. Condorcet, Marie-Jean-Antoine-Nicolas, Marquis de, pp. 383–99, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 3. New York: Scribner.Google Scholar
Grayson, D. K. 2000. Mammalian responses to middle Holocene climatic change in the great basin of the western United States. Journal of Biogeography 27:181–92.CrossRefGoogle Scholar
Green, B. R. 2001. Was ‘molecular opportunism’ a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proceedings of the National Academy of Sciences of the United States of America 98:2119–21.CrossRefGoogle Scholar
Green, S. & Romero, A.. 1997. Responses to light in two blind cave fishes (Amblyopsis spelaea and Typhlichthys subterraneus) (Pisces: Amblyopsidae). Environmental Biology of Fishes 50:167–74.CrossRefGoogle Scholar
Greene, J. C. 1959. The Death of Adam: Evolution and its Impact on Western Thought. Ames, IA: Iowa State University Press.Google Scholar
Greenwood, P. H. 1976. A new and eyeless cobitid fish (Pisces, Cypriniformes) from the Zagros Mountains, Iran. Journal of Zoology 180:129–37.CrossRefGoogle Scholar
Grgic, T. & Kos, I.. 2001. Temperature preference in some centipede species of the genus Lithobius Leach, 1814 (Chilopoda: Lithobiidae). Acta Biologica Slovenica 44:3–12.Google Scholar
Griffin, D. R. 1953. Acoustic orientation in the oil bird, Steatornis. Proceeding of the National Academy of Sciences 39:884–93.CrossRefGoogle ScholarPubMed
Griffith, D. M. & Poulson, T. L.. 1993. Mechanisms and consequences of intraspecific competition in a carabid cave beetle. Ecology 74:1373–83.CrossRefGoogle Scholar
Grimaldi, S. D. & D'Addabbo, M. G.. 2001. Further data on the Mediterranean Sea tardigrade fauna. Zoologischer Anzeiger 240:345–60.CrossRefGoogle Scholar
Grimoult, C. 1998. Évolutionnisme et Fixisme en France. Histoire d'un Combat 1800–1882. Paris: CNRS Éditions.Google Scholar
Grishkan, I., Nevo, E. & Wasser, S. P.. 2004. Micromycetes from the saline Arubotaim Cave: Mount Sedom, the Dead Sea southwestern shore, Israel. Journal of Arid Environments 57:431–43.CrossRefGoogle Scholar
Grobbelaar, J. U. 2000. Lithophytic algae: a major threat to the karst formation of show caves. Journal of Applied Phycology 12:309–15.CrossRefGoogle Scholar
Grobe, P. & Luter, C.. 1999. Reproductive cycles and larval morphology of three recent species of Argyrotheca (Terebratellacea: Brachiopoda) from Mediterranean submarine caves. Marine Biology 134:595–600.CrossRefGoogle Scholar
Groth, I. & Saiz-Jimenez, C.. 1999. Actinomycetes in hypogean environments. Geomicrobiology Journal 16:1–8.Google Scholar
Gucu, A. C., Gucu, G. & Orek, H.. 2004. Habitat use and preliminary demographic evaluation of the critically endangered Mediterranean monk seal (Monachus monachus) in the Cilician Basin (Eastern Mediterranean). Biological Conservation 116:417–31.CrossRefGoogle Scholar
Guerrero, R., Martin, C. & Bain, O.. 2003. Litomosoides yutajensis n. sp., first record of this filarial genus in a mormoopid bat. Parasite. Journal de la Societé Française de Parasitologie 10:219–25.Google Scholar
Gunn, J., Hardwick, P. & Wood, P. J.. 2000. The invertebrate community of the Peak-Speedwell cave system, Derbyshire, England: pressures and considerations for conservation management. Aquatic Conservation-Marine and Freshwater Ecosystems 10:353–69.3.0.CO;2-S>CrossRefGoogle Scholar
Gutierrez, M., Neill, H. & Grand, R. V.. 2004. Metals in sediments of springs and cave streams as environmental indicators in karst areas. Environmental Geology 46:1079–85.CrossRefGoogle Scholar
Guzman-Cornejo, G., Garcia-Prieto, L., Morales-Malacara, J. B. & Leon, G. P. P.. 2003. Acarine infracommunities associated with the Mexican free-tailed bat, Tadarida brasiliensis mexicana (Chiroptera: Molossidae) in arid regions of Mexico. Journal of Medical Entomology 40:996–9.CrossRefGoogle Scholar
Haacke, W. 1893. Gestaltung und Vererbung: eine Entwickelungsmechanik der Organismen. Leipzig: T. O. Weigel.Google Scholar
Hadly, E. A., Ramakrishnan, U., Chan, Y. L.et al. 2004. Genetic response to climatic change: insights from ancient DNA and phylochronology. Public Library of Science Biology 2:1600–9.Google ScholarPubMed
Halliday, R. B. 2001. Mesostigmatid mite fauna of Jenolan Caves, New South Wales (Acari: Mesostigmata). Australian Journal of Entomology 40:299–311.CrossRefGoogle Scholar
Halloy, S. 1991. Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arctic and Alpine Research 23:247–62.CrossRefGoogle Scholar
Hanamura, Y. & Kase, T.. 2003. Palaumysis pilifera, a new species of cave-dwelling mysid (Crustacea: Mysidacea) from Okinawa, southwestern Japan, with an additional note on P. simonae Bacescu & Iliffe, 1986. Hydrobiologia 497:145–52.CrossRefGoogle Scholar
Hancock, P. J., Boulton, A. J. & Humphreys, W. F.. 2005. Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeology Journal 13:98–111.CrossRefGoogle Scholar
Hardwick, P. & Gunn, J.. 1996. The conservation of Britain's limestone cave resource. Environmental Geology 28:121–7.CrossRefGoogle Scholar
Hardy, J. D. 1957. Bat predation by the Cuban boa, Epicrates angulifer. Copeia 1957:151–2.CrossRefGoogle Scholar
Harmelin, J. G. 1990. Interactions between small sciaphilous scleractinians and epizoans in the northern Mediterranean, with particular reference to bryozoans. Marine Ecology-Pubblicazioni della Stazione Zoologica di Napoli I 11:351–64.CrossRefGoogle Scholar
Harmelin, J. G. 1997. Diversity of bryozoans in a Mediterranean sublittoral cave with bathyal like conditions: role of dispersal processes and local factors. Marine Ecology Progress Series 153:139–52.CrossRefGoogle Scholar
Harries, P. J., Kauffman, E. G. & Hansen, T. A.. 1996. Models for biotic survival following mass extinction, pp. 41–60, in: Biotic Recovery from Mass Extinction Events. Special Publication102. London: Geological Society.Google Scholar
Harris, A. 2006. Animalia/Kinorhyncha. The Virtual Zoo. Accessed 11 April 2006. www.virtualzoo.org/classifications/class.php?Style=S&PhylumID=0000000021.
Hart, C. W., Manning, R. B. & Iliffe, T. M.. 1985. Fauna of the Atlantic marine caves: evidence of dispersal by sea floor spreading while maintaining ties to deep water. Proceedings of the Biological Society of Washington 98:288–92.Google Scholar
Hart, E. A. & Schurger, S. G.. 2005. Sediment storage and yield in an urbanized karst watershed. Geomorphology 70:85–96.CrossRefGoogle Scholar
Harvey, J. 1999. A focal point for feminism, politics, and science in France. The Clémence Royer Centennial Celebration of 1930. Osiris 14:86–101.CrossRefGoogle Scholar
Harvey, M. S. 2002. The neglected cousins: what do we know about the smaller arachnid orders? Journal of Arachnology 30:357–72.CrossRefGoogle Scholar
Hawes, R. S. 1939. The flood factor in the ecology of caves. Journal of Animal Ecology 8:1–5.CrossRefGoogle Scholar
Hayami, I. & Kase, T.. 1996. Characteristics of submarine cave bivalves in the northwestern Pacific. American Malacological Bulletin 12:59–65.Google Scholar
Hayes, T. B. 1997. Hormonal mechanisms as potential constraints on evolution: examples from the Anura. American Zoologist 37:482–90.CrossRefGoogle Scholar
Hecht, M. K. & Steere, W. C.. 1970. Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar
Hedin, M. C. 1997. Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51:1929–45.Google Scholar
Herbert, S. 2005. The Darwinian revolution revisited. Journal of the History of Biology 38:51–66.CrossRefGoogle ScholarPubMed
Hernando, C., Aguilera, P. & Ribera, I.. 2001. Limnius stygius sp. nov., the first stygobiontic riffle beetle from the Palearctic Region (Coleoptera: Elmidae). Entomological Problems 32:69–72.Google Scholar
Hershler, R. & Holsinger, J. R.. 1990. Zoogeography of North-American hydrobiid cavesnails. Stygologia 5:4–16.Google Scholar
Hershler, R. & Longley, G.. 1986. Phreatic hydrobiids (Gastropoda: Prosobranchia) from the Edwards (Balcones Fault Zone) Aquifer region, South-Central Texas. Malacologia 27:127–72.Google Scholar
Hervant, F., Mathieu, J. & Durand, J.. 2001. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. Journal of Experimental Biology 204:269–81.Google Scholar
Hervant, F. & Renault, D.. 2002. Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. Journal of Experimental Biology 205:2079–87.Google ScholarPubMed
Heth, G., Nevo, E., & Todrank, J.. 1996. Seasonal changes in urinary odors and in responses to them by blind subterranean mole rats. Physiology and Behavior 60:963–8.CrossRefGoogle ScholarPubMed
Heuss, T. 1991. Anton Dohrn: a Life for Science. New York: Springer-Verlag.CrossRefGoogle Scholar
Hickman, C., Roberts, L. & Larson, A.. 2000. Animal Diversity. New York: McGraw-Hill.Google Scholar
Hill, C. R. 1974. The sources and influence of the Descrittione di tutta Italia of Fra Leandro Alberti. Ph.D. dissertation, University of Edinburgh.
Hill, L. 1969. Feeding and food habits of the spring cavefish, Chologaster agassizi. American Midland Naturalist 82:110–16.CrossRefGoogle Scholar
Hintzsche, E. 1972. Henle, Friedrich Gustav Jacob, pp. 268–70, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 6. New York: Scribner.Google Scholar
Hintzsche, E. 1973. Koellikeer, Rudolf Albert von, pp. 437–40, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 7. New York: Scribner.Google Scholar
Hobbs, H. H. 2000. Crustacea, pp. 95–107, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Hoch, H. & Howarth, F. G.. 1999. Multiple cave invasions by species of the planthopper genus Oliarus in Hawaii (Homoptera: Fulgoroidea: Cixiidae). Zoological Journal of the Linnean Society 127:453–75.CrossRefGoogle Scholar
Hoenen, S. & Gnaspini, P.. 1999. Activity rhythms and behavioral characterization of two epigean and one cavernicolous harvestmen (Arachnida, Opiliones: Gonyleptidae). Journal of Arachnology 27:159–64.Google Scholar
Holmes, A. J., Tujula, N. A., Holley, M.et al. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environmental Microbiology 3:256–64.CrossRefGoogle ScholarPubMed
Holsinger, J. R. 1976. The cave fauna of Pennsylvania, pp. 72–87, in: White, W. B. (ed.) Geology and Biology of Pennsylvania Caves. Harrisburg, PA: Geological Survey.Google Scholar
Holsinger, J. R. 2000. Ecological derivation, colonization, and speciation, pp. 399–415 in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Holthuis, L. B. 1973. Caridean shrimp found in land locked saltwater pools at four Indo-West Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zoologisches Verhandelingen 128:1–48.Google Scholar
Horder, T. J. 1998. Why do scientists need to be historians? Quarterly Review of Biology 73:175–87.CrossRefGoogle Scholar
Horikoshi, K. & Grant, W. D.. 1998. Extremophiles: Microbial Life in Extreme Environments. New York: Wiley-Liss.Google Scholar
Hose, L. D., Palmer, A. N., Palmer, M. V.et al. 2000. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environmentChemical Geology 69:399–423.CrossRefGoogle Scholar
Howard, A. D. & Groves, C. G.. 1995. Early development of karst systems. 2. Turbulent flow. Water Resources Research 31:19–26.CrossRefGoogle Scholar
Howard, M. 1981. The Franco-Prussian War: The German Invasion of France, 1870–1871. London: Routledge.Google Scholar
Howarth, F. G. 1973. The cavernicolous fauna of Hawaiian lava tubes. Introduction. Pacific Insects 15:139–51.Google Scholar
Howarth, F. G. 1981. Non-relictual terrestrial troglobites in the tropic Hawaiian caves. Proceedings of the 8th International Speleological Congress of Speleology 2:539–41.Google Scholar
Howarth, F. G. 1983. Ecology of cave arthropods. Annual Review of Entomology 28:365–89.CrossRefGoogle Scholar
Howitt, A. W., Burke, R. O'Hara, King, J.et al. 1862. Exploring expedition from Victoria to the Gulf of Carpentaria, under the Command of Mr. Robert O'Hara Burke. Journal of the Royal Geographical Society of London 32:430–529.CrossRefGoogle Scholar
Hsu, M. J. 1997. Population status and conservation of bats (Chiroptera) in Kenting National Park, Taiwan. Oryx 3:295–301.CrossRefGoogle Scholar
Hsu, M. J. & Agoramoorthy, G.. 2001. Occurrence and diversity of thermophilous soil microfungi in forest and cave ecosystems of Taiwan. Fungal Divers Research Series 7:27–33.Google Scholar
Hubbs, C. L. 1938. Fishes from the caves of Yucatan. Carnegie Institution of Washington Publications 491:261–95.Google Scholar
Hubbs, C. L. 1964. David Starr Jordan. Systematic Zoology 13:195–200.CrossRefGoogle Scholar
Humboldt, A. von. 1793. Florae Fribergensis Specimen, Plantas Cryptogamicas Praesertim Subterraneas Exhibens. Berolini: H.A. Rottmann.Google Scholar
Humboldt, A. von. 1805. Mémoire sur une nouvelle espèce de pimelode, jetée par les volcans du Royaume de Quito, in: Humboldt, A. & Bompland, A. (eds.) Voyage de Humboldt et Bonpland, deuxième partie. Observations de Zoologie et d'Anatomie comparée, vol. 1.Google Scholar
Humboldt, A. von. 1817. Mémoire sur le Guacharo de la caverne de Caripe. Recueil d'Observations de Zoologie Et d'Anatomie no. 2.Google Scholar
Humphreys, W. 1991. Experimental re-establishment of pulse-driven populations in a terrestrial troglobite community. Journal of Animal Ecology 60:609–23.CrossRefGoogle Scholar
Humphreys, W. F. 1993. Cave fauna in semi-arid tropical Western Australia: a diverse relict wet-forest litter fauna. Mémoires de Biospéologie 20:105–10.Google Scholar
Humphreys, W. F. 2006. Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54:115–32.CrossRefGoogle Scholar
Hunter, A. J., Northup, D. E., Dahm, C. N. & Boston, P. J.. 2004. Persistent coliform contamination in Lechuguilla Cave pools. Journal of Cave and Karst Studies 66:102–10.Google Scholar
Huppert, G. N. 1995. Legal protection for caves in the United States. Environmental Geology 26:121–3.Google Scholar
Hüppop, K. 2000. How do cave animals cope with the food scarcity in caves?, pp. 159–88, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Husband, R. W. & O'Conner, B. M.. 2003. A new genus and species of mite (Acari: Tarsonemia: Podapolipidae), ectoparasite of the Peruvian cockroaches, Blaberus parabolicus (Walker) and Eublaberus distanti (Kirby) (Blattodea: Blaberidae). International Journal of Acarology 29:331–8.CrossRefGoogle Scholar
Huys, R. & Iliffe, T. M.. 1998. Novocriniidae, a new family of harpacticoid copepods from anchihaline caves in Belize. Zoologica Scripta 27:1–15.CrossRefGoogle Scholar
Ignatov, M. S. & Ignatova, E. A.. 2001. On the zoochory of Schistostega pennata (Schistostegaceae, Musci). Arctoa 10:83–96.CrossRefGoogle Scholar
Iliffe, T. M. & Jickells, T. D.. 1984. Organic pollution of an inland marine cave from Bermuda. Marine Environmental Research 12:173–89.CrossRefGoogle Scholar
Iwaniuk, A. N., Heesy, C. P., Hall, M. I. & Douglas, D. R. W.. 2008. Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. Journal of Comparative Physiology A-Neuroethology, Sensory, Neural and Behavioral Physiology 194:267–82.CrossRefGoogle ScholarPubMed
Jackson, J. R. & Kimler, W. C.. 1999. Taxonomy and the personal equation: the historical fates of Charles Girard and Louis Agassiz. Journal of the History of Biology 32:509–55.CrossRefGoogle Scholar
Jager, P. 2005. New large-sized cave-dwelling Heteropoda species from Asia, with notes on their relationships (Araneae: Sparassidae: Heteropodinae). Revue Suisse de Zoologie 112:87–114.CrossRefGoogle Scholar
Jaksĭć, F. M. & Braker, H. E.. 1983. Food-niche relationships and guild structure of diurnal birds of prey: competition versus opportunism. Canadian Journal of Zoology 61:2230–41.CrossRefGoogle Scholar
James, J. M. 1993. Burial and infilling of a karst in Papua New Guinea by road erosion sediments. Environmental Geology 21:144–51.CrossRefGoogle Scholar
Jasinska, E. J., Knott, B. & McComb, A. J.. 1996. Root mats in ground water: a fauna-rice cave habitat. Journal of the North American Benthological Society 15:508–19.CrossRefGoogle Scholar
Jaume, D., Boxshall, G. A. & Humphreys, W. F.. 2001. New stygobiont copepods (Calanoida; Misophrioida) from Bundera Sinkhole, an anchialine cenote in north-western Australia. Zoological Journal of the Linnean Society 133:1–24.CrossRefGoogle Scholar
Jeannel, R. G. 1926. Faune Cavernicole de la France avec une Étude des Conditions d'Existence dans le Domaine Souterrain. Paris: P. Lechevalier.Google Scholar
Jeannel, R. G. 1950. La Marche de l'Evolution. Paris: Presses Universitaires de France.Google Scholar
Jeffery, W. R. 2001. Cavefish as a model system in evolutionary developmental biology. Developmental Biology 231:1–12.CrossRefGoogle ScholarPubMed
Jensen, J. B., Camp, C. D. & Marshall, J. L.. 2002. Ecology and life history of the pigeon salamander. Southeastern Naturalist 1:3–16.CrossRefGoogle Scholar
Johnson, K. H. 2000. Trophic-dynamic considerations in relating species diversity to ecosystem resilience. Biological Reviews of the Cambridge Philosophical Society 75:347–76.CrossRefGoogle ScholarPubMed
Jones, B. 1995. Processes associated with microbial biofilms in the twilight zone of caves – examples from the Cayman Islands. Journal of Sedimentary Research Section A 65:552–60.Google Scholar
Jones, B. 2001. Microbial activity in caves: a geological perspective. Geomicrobiology Journal 18:345–57.CrossRefGoogle Scholar
Jones, W. K., Culver, D. C. & Herman, J. S.. 2004. Epikarst. Proceedings of the Symposium held October 1–4, 2003, Shepherstown, West Virginia, U.S.A. Charles Town, West Virginia: Karst Waters Institute.Google Scholar
Juberthie, C. 2000. The diversity of the karstic and pseudokarstic hypogean habitats in the world, pp. 17–39, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Juberthie, C., Bouillon, M. & Delay, B.. 1981. Sur l'existence du milieu souterrain superficiel en zone calcaire. Mémoires de Biospéologie 8:77–93.Google Scholar
Juberthie, C. & Ginet, R.. 1994. France, pp. 665–692, in: Juberthie, C. & Decu, V. (eds.) Encyclopaedia Biospeologica. Moulis: Societé de Biospeléologie.Google Scholar
Juget, J., Chatelliers, M. C. D. & Rodriguez, P.. 2006. Troglodrilus (Annelida, Oligochaeta, Tubificidae), a new genus from subterranean habitats in southwestern Europe. Hydrobiologia 564:7–17.CrossRefGoogle Scholar
Južnič, S. 2006. Karst research in the 19th century – Karl Dežman's (1821–1889) work. Acta Carsologica 35/1:139–48.Google Scholar
Kajihiro, E. S. 1965. Occurrence of dermatophytes in fresh bat guano. Applied Microbiology 13:720–4.Google ScholarPubMed
Kano, Y., Chiba, S. & Kase, T.. 2002. Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records. Proceedings of the Royal Society of London Series 269:2457–65.CrossRefGoogle ScholarPubMed
Kano, Y. & Kase, T.. 2002. Anatomy and systematics of the submarine-cave gastropod Pisulina (Neritopsina: Neritiliidae). Journal of Molluscan Studies 68:365–83.CrossRefGoogle Scholar
Karaman, G. S. & Matocec, S. G.. 2006. Niphargus echion, a new species of amphipod (Crustacea Amphipoda, Niphargidae) from Istra, Croatia. Zootaxa 1150:53–68.Google Scholar
Karamanlidis, A. A., Pires, R., Silva, N. C. & Neves, H. C.. 2004. The availability of resting and pupping habitat for the critically endangered Mediterranean monk seal Monachus monachus in the archipelago of Madeira. Oryx 38:180–5.CrossRefGoogle Scholar
Kasyanov, V. L., Korn, O. M. & Rybakov, A. V.. 1997. Reproductive strategy of cirripedes (Thecostraca, Cirripedia). 2. Asexual reproduction, fecundity and reproductive cycles. Biologiya Morya (Vladivostok) 23:337–44.Google Scholar
Kerrigan, R. W., Carvallho, D. M., Horgen, P. A. & Anderson, J. B.. 1995. Indigenous and introduced populations of Agaricus bisporus, the cultivated ‘button mushroom’, in eastern and western Canada. Canadian Journal of Botany 73:1925–38.CrossRefGoogle Scholar
Kirby, R. F., Thompson, K. W. & Hubbs, C.. 1977. Karyotypic similarities between the Mexican and blind tetras. Copeia 1977:578–80.CrossRefGoogle Scholar
Kircher, A. 1665. Mundus Subterraneus, in XII libros digestus; quo divinum subterrestris mundi opificium, mira ergasteriorum naturæ in eo distributio, verbo pantámorphou Protei regnum, universæ denique naturæ majestas & divitiæ summa rerum varietate exponuntur. Amsterdam: J. Janssonium and E. Weyerstraten.Google Scholar
Knight, J. 1997. Subterranean blues. New Scientist (2099):26.Google Scholar
Koch, C. L. 1835–8. Deutschlands Crustaceen, Myriapoden und Arachniden: ein Beitrag zur Deutschen Fauna. Regensburg: F. Pustet.Google Scholar
Koenemann, D., Iliffe, T. M. & Ham, J.. 2003. Three new sympatric species of Remipedia (Crustacea) from Great Exuma Island, Bahamas Islands. Contributions to Zoology 72:227–52.Google Scholar
Koilraj, A. J., Marimuthu, G., Natarajan, K., Saravanan, S., Maran, P. & Hsu, M. J.. 1999. Fungal diversity inside caves of Southern India. Current Science 77:1081–4.Google Scholar
Koilraj, A., Sharma, V., Marimuthu, G. & Chandrashekaran, M.. 2000. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiology International 17:757–65.CrossRefGoogle Scholar
Konishi, M. & Knudsen, E. I.. 1979. The oilbird: hearing and echolocation. Science 204:425–7.CrossRefGoogle ScholarPubMed
Könnecker, G. & Freiwald, A.. 2005. Plectroninia celtica n. sp. (Calcarea, Minchinellidae), a new species of “pharetronid” sponge from bathyal depths in the northern Porcupine Seabight, NE Atlantic. FACIES 51:57–63.CrossRefGoogle Scholar
Koppelman, J. B. & Figg, D. E.. 1995. Genetic estimates of variability and relatedness for conservation of an Ozark cave crayfish species complex. Conservation Biology 9:1288–94.CrossRefGoogle Scholar
Kornicker, L. S. & Yager, J.. 2002. Description of Spelaeoecia saturno, a new species from an anchialine cave in Cuba (Crustacea: Ostracoda: Myodocopa: Halocyprididae). Proceedings of the Biological Society of Washington 115:153–70.Google Scholar
Kristjánsson, J. K. & Hreggvidsson, G. O.. 1995. Ecology and habitats of extremophiles. World Journal of Microbiology and Biotechnology 11:17–25.CrossRefGoogle ScholarPubMed
Ku, T. L. & Li, H. C.. 1998. Speleothems as high-resolution paleoenvironment archives: records from northeastern China. Proceedings of the Indian Academy of Sciences – Earth and Planetary Sciences 107:321–30.Google Scholar
Kuehn, K. A. & Koehn, R. D.. 1991. Fungal populations isolated from Ezell Cave in South Texas. Stygologia 6:65–76.Google Scholar
Kuehn, K. A., O'Neil, R. M. & Koehn, R. D.. 1992. Viable photosynthetic microalgal isolates from aphotic environments of the Edwards Aquifer (Central Texas). Stygicola 7:129–42.Google Scholar
Kuhajda, B. R. & Mayden, R. L.. 2001. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and surrounding caves, Alabama. Environmental Biology of Fishes 62:215–22.CrossRefGoogle Scholar
Kuhn, T. S. 1970. The Structure of Scientific Revolutions. Chicago, IL: The University of Chicago Press.Google Scholar
Kuntner, M., Sket, B. & Blejec, A.. 1999. A comparison of the respiratory systems in some cave and surface species of spiders (Araneae, Dysderidae). Journal of Arachnology 27:142–8.Google Scholar
Kurta, A., Whitaker, J. O., Wrennm, W. J. & Soto-Centeno, J. A.. 2007. Ectoparasitic assemblages on mormoopid bats (Chiroptera: Mormoopidae) from Puerto Rico. Journal of Medical Entomology 44: 953–8.CrossRefGoogle ScholarPubMed
LaFleur, R. G. 1999. Geomorphic aspects of groundwater flow. Hydrogeology Journal 7:78–93.CrossRefGoogle Scholar
Laing, C., Carmody, G. & Peck, S.. 1976a. How common are sibling species in cave-inhabiting invertebrates? The American Naturalist 110:184–9.CrossRefGoogle Scholar
Laing, C., Carmody, G. & Peck, S. B.. 1976b. Population genetics and evolutionary biology of the cave beetlePtomophagus hirtus. Evolution 30:484–98.CrossRefGoogle ScholarPubMed
LaMoreaux, P. E. & LaMoreaux, J.. 2007. Karst: the foundation for concepts in hydrogeology. Environmental Geology 51:685–8.CrossRefGoogle Scholar
Landoldt, J. C., Stephenson, S. L. & Stihler, C. W.. 1992. Cellular slime molds in West Virginia caves including notes on the occurrence and distribution of Dictyostelium rosarium. Mycologia 84:399–405.CrossRefGoogle Scholar
Langecker, T. G. 1989. Studies on the light reaction of epigean and cave populations of Astyanax fasciatus (Characidae, Pisces). Mémoires de Biospéologie 16:169–76.Google Scholar
Langecker, T. G. 2000. The effects of continuous darkness on cave ecology and cavernicolous evolution, pp. 135–57, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Langecker, T. G. & Longley, G.. 1993. Morphological adaptations of the Texas blind catfishes Trogloglanis pattersoni and Satan eurystomus (Siluriformes: Ictaluridae) to their underground environment. Copeia 1993:976–86.CrossRefGoogle Scholar
Langecker, T. G., Wilkens, H. & Junge, P.. 1991. Introgressive hybridization in the Pachon Cave population of Astyanax fasciatus (Teleostei: Characidae). Ichthyological Exploration of Freshwaters 2:209–12.Google Scholar
Lankester, E. R. 1880. Degeneration: a Chapter in Darwinism. London: Macmillan.CrossRefGoogle Scholar
Lankester, E. R. 1893. Blind animals in caves. Nature 47:389.CrossRefGoogle Scholar
Larson, A., Weisrock, D. W. & Kozak, K. H.. 2003. Phylogenetic systematics of salamanders (Amphibia: Urodela), a review, pp. 31–108, in: Selver, D. M. (ed.) Reproductive Biology and Phylogeny of Urodela. Enfield, NH: Science Publishers, Inc.Google Scholar
Larson, D. J. & Labonte, J. R.. 1994. Stygoporus oregonensis, a new genus and species of subterranean water beetle (Coleoptera: Dytiscidae: Hydroporini) from the United States. Coleopterists Bulletin 48:371–9.Google Scholar
Laurenti, J. N. 1768. Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium Austriacorum. Wien: Joan Thomae.CrossRefGoogle Scholar
Lavoie, K. H., Helf, K. L. & Poulson, T. L.. 2007. The biology and ecology of North American cave crickets. Journal of Cave and Karst Studies 69:114–34.Google Scholar
Lee, P. L. M., Clayton, D. H., Griffiths, R. & Page, R. D. M.. 1996. Does behavior reflect phylogeny in swiftlets (Aves: Apodidae)? A test using cytochrome b mitochondrial DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 93:7091–6.CrossRefGoogle ScholarPubMed
Lee, S. & Kim, H.. 2006. A fern aphid, Neomacromyzus cyrtomicola Lee, new genus and new species (Hemiptera: Aphididae) on Cyrtomium falcatum (Dryopteridaceae) in basalt rock caves. Proceedings of the Entomological Society of Washington 108:493–501.Google Scholar
Lefebvre, L., Whittle, P. & Lascaris, E.. 1997. Feeding innovations and forebrain size in birds. Animal Behaviour 53:549–60.CrossRefGoogle Scholar
Lehnert, H. 1998. Thrombus jancai new species (Porifera, Demospongiae, Astrophorida) from shallow water off Jamaica. Bulletin of Marine Science 62:181–7.Google Scholar
Leith, J. A. 1989. L'Evolution de l'idée de progrès à travers l'histoire. Transactions of the Royal Society of Canada 4:3–8.Google Scholar
Maho, Y. 1984. Adaptations métaboliques au jeûne prolongé chez les oiseaux et les mammifères. Bulletin d'Ecophysiologie 2:129–48.Google Scholar
Lewis, J. J. 2000. Caecidotea cumberlandensis, a new species of troglobitic isopod from Virginia, with new records of other subterranean Caecidotea (Crustacea: Isopoda: Asellidae). Proceedings of the Biological Society of Washington 113:458–64.Google Scholar
Lewis, J. J. 2005. Six new species of Pseudotremia from caves of the Tennessee Cumberland Plateau (Diplopoda: Chordeumatida: Cleidogonidae). Zootaxa 1080:17–31.CrossRefGoogle Scholar
Lewis, W. C. 1989. Histoplasmosis: a hazard to new tropical caves. National Speleological Society Bulletin 51:52–65.Google Scholar
Leys, R., Watts, C. H. S., Cooper, S. J. B. & Humphreys, W. F.. 2003. Evolution of subterranean diving beetles (Coleoptera: Dytisicidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–34.Google Scholar
Leys, S. P., Cheung, E., & Boury-Esnault, N.. 2006. Embryogenesis in the glass sponge Oopsacas minuta: formation of syncytia by fusion of blastomeres. Integrative and Comparative Biology 46:104–17.CrossRef
Li, W., Wu, D., Chen, A. & Tao, J.. 1997. Histological study on the horn-like projection of the head of Sinocyclocheilus rhinocerous. Journal of Yunnan University 19:426–8.Google Scholar
Lidgard, D. C., Kiely, O., Rogan, E. & Connolly, N.. 2001. The status of breeding grey seals (Halichoerus grypus) on the east and south-east of Ireland. Mammalia 65:283–94.CrossRefGoogle Scholar
Lister, M. 1674. An account of two uncommon mineral substances, found in some coal and iron-mines of England; as it was given by the intelligent and learned Mr. Jessop of Bromhal in York-Shire to the ingenious Mr. Lister, and by him communicated to the publisher in a letter of January 7. 1663/74. Philosophical Transactions of the Royal Society of London 8:6179–81.Google Scholar
Livezey, B. C. & Humphrey, P. S.. 1986. Flightlessness in steamer-ducks (Anatidae: Tachyeres): its morphological bases and probable evolution. Evolution 40:540–58.Google ScholarPubMed
Logan, A. 2005. A new lacazelline species (Brachiopoda, Recent) from the Maldive Islands, Indian Ocean. Systematics and Biodiversity 3:97–104.CrossRefGoogle Scholar
Logan, A. & Zibrowius, H.. 1994. A new genus and species of rhynchonellid (Brachiopoda, Recent) from submarine caves in the Mediterranean Sea. Marine Ecology – Pubblicazioni della Stazione Zoologica di Napoli I 15:77–88.CrossRefGoogle Scholar
Lolcama, J. L., Cohen, H. A. & Tonkin, M. J.. 2002. Deep karst conduits, flooding, and sinkholes: lessons for the aggregates industry. Engineering Geology 65:151–7.CrossRefGoogle Scholar
Longley, G. 1981. The Edwards Aquifer: Earth's most diverse groundwater ecosystem?International Journal of Speleology 11:123–8.CrossRefGoogle Scholar
Longrás Otín, L. 2002. Francisco de Tauste (1626–1685), pp. 9–38, in: Jiménez, M.A. Pallarés (ed.). Arte y Bocabvlario de la lengva de los Indion Chaymas, Cvmanagotos, Cores, Parias, y otros diversos de la Provincia de Cvmana, o Nueva Andalvcia. Zaragoza, Spain: Instituto Aragonés de Antropología.Google Scholar
Lourenco, W. R. 1995. Chaerilus sabinae, a new species of anophthalmous scorpion from the caves of matampa in India (Scorpiones, Chaerilidae). Revue Suisse de Zoologie 102:847–50.Google Scholar
Lourenco, W. R. 2007. First record of the family Pseudochactidae Gromov (Chelicerata, Scorpiones) from Laos and new biogeographic evidence of a Pangaean palaeodistribution. Comptes Rendus Biologies 330:770–7.CrossRefGoogle ScholarPubMed
Lourie, S. A. & Tompkins, D. M.. 2000. The diets of Malaysian swiftlets. Ibis 142:596–602.CrossRefGoogle Scholar
Lozouet, P. 2004. The European Tertiary Neritiliidae (Mollusca, Gastropoda, Neritopsina): indicators of tropical submarine cave environments and freshwater faunas. Zoological Journal of the Linnean Society 140:447–67.CrossRefGoogle Scholar
Lucas, F. A. 1898. Biological Society of Washington, 296th meeting, Saturday November 5. 8:717–20.CrossRef
Ludlow, M. E. & Gore, J. A.. 2000. Effects of a cave gate on emergence patterns of colonial bats. Wildlife Society Bulletin 28:191–6.Google Scholar
Lull, R. S. 1921. Organic Evolution. New York: Macmillan.Google Scholar
Lurie, E. 1960. Louis Agassiz. A Life in Science. Chicago: University of Chicago Press.Google Scholar
Lurie, E. 1970. Agassiz, Jean Louis Rodolphe, pp. 72–4, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 1. New York: Scribner.Google Scholar
Luter, C., Worheide, G. & Reitner, J.. 2003. A new thecideid genus and species (Brachiopoda, Recent) from submarine caves of Osprey Reef (Queensland Plateau, Coral Sea, Australia). Journal of Natural History 37:1423–32.CrossRefGoogle Scholar
Lydeard, C., Cowie, R. H., Ponder, W. F.et al. 2004. The global decline of nonmarine mollusks. BioScience 54:321–30.CrossRefGoogle Scholar
Lyell, C. 1830–1833. Principles of Geology. London: J. Murray.Google Scholar
MacElroy, R. D. 1974. Some comments on the evolution of extremophiles. Biosystems 6:74–5.CrossRefGoogle Scholar
Machado, G. & Oliveira, P. S.. 1998. Reproduction biology of the neotropical harvestman (Goniosoma longipes) (Arachnida, Opiliones: Gonyleptidae): mating and ovoposition behaviour, brood mortality, and parental care. Journal of Zoology 246:359–67.CrossRefGoogle Scholar
Machado, G., Raimundo, R. L. G. & Oliveira, P. S.. 2000. Daily activity schedule, gregariousness, and defensive behavior in the Neotropical harvestman Goniosoma longipes (Opiliones: Gonyleptidae). Journal of Natural History 34:587–96.CrossRefGoogle Scholar
Machado, S. F., Ferreira, R. L. & Martins, R. P.. 2003. Aspects of the population ecology of Goniosoma sp. (Arachnida, Opiliones, Gonyleptidae). Tropical Zoology 16:13–31.CrossRefGoogle Scholar
Mader, B. 2003. Archdure Ludwig Salvator and Leptodirus hohenwarti from Postojnska jama. Acta Carsologica 32/2:289–98.Google Scholar
Magniez, G. J. 2001. New data on Stenasellus strinatii (Crustacea, Isopoda, Asellota, Stenasellidae), stygobiont from Sumatra (Indonesia). Revue Suisse de Zoologie 108:551–7.CrossRefGoogle Scholar
Maher, L. J. 2006. Environmental information from guano palynology of insectivorous bats of the central part of the United States of America. Palaeogeography, Palaeoclimatology, Palaeoecology 237:19–31.CrossRefGoogle Scholar
Mahler, B. J., Lynch, L. & Bennett, P. C.. 1999. Mobile sediment in an urbanizing karst aquifer: implications for contaminant transport. Environmental Geology 39:25–38.CrossRefGoogle Scholar
Mahunka, S. 2001. Cave-dwelling oribatid mites from Greece (Acari: Orbatida). Revue Suisse de Zoologie 108:165–88.CrossRefGoogle Scholar
Makarov, S. E., Mitic, B. M. & Curcic, S. B.. 2002. On two new cave diplopods from Serbia (Diplopoda, Julida). Israel Journal of Zoology 48:235–42.CrossRefGoogle Scholar
Makarov, S. E., Lucic, L. R., Tomic, V. T. & Karaman, I. M.. 2003a. Two new glomeridellids (Glomeridellidae, Diplopoda) from Montenegro and Macedonia. Periodicum Biologorum 105:473–7.Google Scholar
Makarov, S. E., Mitic, B. M. & Curcic, S. B.. 2003b. Svarogosoma bozidarcurcici, n. g., n. sp. (Diplopoda, Anthroleucosomatidae) from the Balkan Peninsula, with notes on its phylogeny. Periodicum Biologorum 105:465–72.Google Scholar
Makarov, S. E., Mitic, B. M. & Rada, T.. 2003c. On some endemic diplopods from Croatia (Polydesmida, Diplopoda). Periodicum Biologorum 105:163–6.Google Scholar
Makarov, S. E., Rada, T., Tomic, V. T., Mitic, B. M. & Vujcic-Karlo, S.. 2006. Typhloiulus gellianae n. sp., a new cave-dwelling diplopod from Croatia (Myriapoda, Diplopoda, Julidae). Periodicum Biologorum 108:97–9.Google Scholar
Makol, J. & Gabrys, G.. 2005. Caecothrombium deharvengi sp. nov. (Acari: Actinotrichida: Eutrombidiidae) from Vietnam, with a proposal of Caethrombiinae subfam. nov. Zoologischer Anzeiger 243:227–37.CrossRefGoogle Scholar
Mangin, A. 1973. Sur la dynamique des transferts en aquifère karstique, pp. 157–62, in: International Union of Biospeleology Proceedings of the 6th International Congress on Speleology, Olomouc. Prague: Academia.Google Scholar
Mangin, A., Bourges, F. & d'Hulst, D.. 1999. La conservation des grottes ornéss: un problème de stabilité d'un système natural (l'exemple de la grotte préhistorique de Gargas, Pyrénées françaises). Comptes Rendus de l'Academie des Sciences, Serie II, Fascicule a 328:295–301.Google Scholar
Mann, S. L., Steidl, R. J. & Dalton, V. M.. 2002. Effects of cave tours on breeding Myotis velifer. Journal of Wildlife Management 66:618–24.CrossRefGoogle Scholar
Manoleli, D. G., Klemm, D. J. & Sarbu, S. M.. 1998. Haemopis caeca (Annelida: Hirudinea: Arhynchobdellida: Haemopidae), a new species of troglobitic leech from a chemoautotrophically based groundwater ecosystem in Romania. Proceedings of the Biological Society of Washington 111:222–9.Google Scholar
Margalef, R. 1974. Ecología. Barcelona, Spain: Omega.Google Scholar
Margalef, R. 1993. Teoría de los Sistemas Ecológicos. Barcelona, Spain: Universidad de Barcelona.Google Scholar
Margalef, R. & Gutierrez, E.. 1983. How to introduce connectance in the frame of an expression for diversity. American Naturalist 121:601–7.CrossRefGoogle Scholar
Mariani, S. 2003. Recruitment in invertebrates with short-lived larvae: the case of the bryozoan Disporella hispida (Fleming). Helgoland Marine Research 57:47–53.Google Scholar
Mariani, S., Alcoverro, T., Uriz, M. J. & Turon, X.. 2005. Early life histories in the bryozoan Schizobrachiella sanguinea: a case study. Marine Biology 147:735–45.CrossRefGoogle Scholar
Marmonier, P., Vervier, P., Gilbert, J. & Dole-Olivier, M.-J.. 1993. Biodiversity in ground waters. Trends in Ecology and Evolution 8:392–5.CrossRefGoogle ScholarPubMed
Martel, E. A. 1889. Sous terre (1er. Campagne). Annales du Club Alpine de France 15(for 1888):238–94.Google Scholar
Martel, E. A. 1894a. Les Abîmes. Paris: Delagrave.Google Scholar
Martel, E. A. 1894b. La spélaeologie. Comptes Rendus de la Association Française pour l'Advancement des Sciences 22:60.Google Scholar
Martel, E. A. 1896. Speleology, pp. 721–6, in Report of the Sixth International Geographical Congress: held in London, 1895. London: J. Murray.Google Scholar
Martel, E. A. 1897. British caves and speleology. Geographical Journal 10:500–11.CrossRefGoogle Scholar
Martel, E. A. 1900. La spéléologie: ou Science des Cavernes. Paris: Gauthier-Villars.Google Scholar
Mathieu, J. & Gilbert, J.. 1980. Evolution des teneurs en proteins, glucides et lipids de Niphargus renorhodanensis Schellenberg comparé entre l'elevage en milieu naturel reconstitué et le jeûne experimental. Crustaceana (Suppl.) 6:128–36.Google Scholar
Marti, R., Uriz, M. J., Ballesteros, E. & Turon, X.. 2004. Temporal variation of several structure descriptors in animal-dominated benthic communities in two Mediterranean caves. Journal of the Marine Biological Association of the United Kingdom 84:573–80.CrossRefGoogle Scholar
Marti, R., Uriz, M. J. & Turon, X.. 2005. Spatial and temporal variation of natural toxicity in cnidarians, bryozoans and tunicates in Mediterranean caves. Scientia Marina 69:485–92.Google Scholar
Martin, J. M. & Braga, J. C.. 1994. Messinian events in the Sorbas Basin in southeastern Spain and their implications in the Recent history of the Mediterranean. Sedimentary Geology 90:257–68.CrossRefGoogle Scholar
Martin, G. R., Rojas, L. M., Ramirez, F., & McNeil, R.. 2004a. The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften 91:26–9.CrossRefGoogle Scholar
Martin, G. R., Rojas, L. M., Ramirez, F., Yleana, M. & McNeil, R.. 2004b. Binocular vision and nocturnal activity in oilbirds (Steatornis caripensis) and pauraques (Nyctidromus albicollis): Caprimulgiformes. Ornitologia Neotropical 15:233–42.Google Scholar
Martin, J. W. & Davis, G. E.. 2006. Historical trends in crustacean systematics. Crustaceana 79:1347–68.CrossRefGoogle Scholar
Martin, K. W., Leslie, D. M., Payton, M. E., Puckette, W. L. & Hensley, S. L.. 2003. Internal cave gating for protection of colonies of the endangered gray bat (Myotis grisescens). Acta Chiropterologica 5:143–50.CrossRefGoogle Scholar
Martin, K. W., Leslie, D. M., Payton, M. E., Puckette, W. L. & Hensley, S. L.. 2006. Impacts of passage manipulation on cave climate: conservation implications for cave-dwelling bats. Wildlife Society Bulletin 34:137–43.CrossRefGoogle Scholar
Martuscelli, P. 1995. Avian predation by the round-eared bat (Tonatia bidens, Phyllostomidae) in the Brazilian Atlantic forest. Journal of Tropical Ecology 11:461–4.CrossRefGoogle Scholar
Matjašič, J. & Sket, B.. 1971. Jamski hydroid s slovenskega krasa. Biološki Vestnik 19:139–45.Google Scholar
Maynard Smith, J. 1970. Time in evolutionary process. Studium Generale 23:266–72.Google Scholar
Mayr, E. 1960. The emergence of evolutionary novelties, pp. 349–80, in: Tax, S. (ed.) The Evolution of Life. Its Origin, History, and Future. Chicago IL: The University of Chicago Press.Google Scholar
Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA: Belknap Press.Google Scholar
McAllister, C. & Bursey, C.. 2004. Endoparasites of the dark-sided salamander, Eurycea longicauda melanopleura, and the cave salamander, Eurycea lucifuga (Caudata: Plethodontidae), from two caves in Arkansas, USA. Comparative Parasitology 71:61–6.CrossRefGoogle Scholar
McCracken, G. F. 1986. Why are we losing our Mexican free-tailed bats? Bats 3:1–4.Google Scholar
McCracken, G. F. 1989. Cave conservation: special problems of bats. Bulletin of the National Speleological Society 51:47–51.Google Scholar
McFarlane, D. A. 1986. Cave bats of Jamaica. Oryx 20:27–30.CrossRefGoogle Scholar
McFarlane, D. A. & Lundberg, J.. 2005. The 19th century excavation of Kent's Cavern, England. Journal of Cave and Karst Studies 67:39–47.Google Scholar
McGrew, W. C., McKee, J. K., & Tutin, C. E. G.. 2003. Primates in caves: two new reports of Papio spp. Journal of Human Evolution 44:521–6.CrossRefGoogle ScholarPubMed
McKenna, J. J. 1979. The evolution of allomothering behavior among colobine monkeys: function and opportunism in evolution. American Anthropologist 81:818–40.CrossRefGoogle Scholar
McLaughlin, P. 2002. Naming biology. Journal of the History of Biology 35:1–4.CrossRefGoogle ScholarPubMed
McMurray, D. N. & Russell, L. H.. 1982. Contribution of bats to the maintenance of Histoplasma capsulatum in a cave microfocus. American Journal of Tropical Medicine and Hygene 31:527–31.CrossRefGoogle Scholar
McPeek, M. A. 1995. Morphological evolution mediated by behavior in the damselflies of two communities. Evolution 49:749–69.CrossRefGoogle ScholarPubMed
Mejia-Orriz, L. M., Hartnoll, R. G., Viccon-Pale, J. A.. 2003. A new stygobitic crayfish from Mexico, Procambarus cavernicola (Decapoda: Cambaridae), with a review of cave-dwelling crayfishes in Mexico. Journal of Crustacean Biology 23:391–401.CrossRefGoogle Scholar
Melendez-Hevia, E., Waddell, T. G. & Cascante, M.. 1996. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. Journal of Molecular Evolution 43:293–303.CrossRefGoogle ScholarPubMed
Melim, L. A., Shinglman, K. M., Boston, P. J.et al. 2001. Evidence for microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiology Journal 18:311–29.Google Scholar
Mendez, G. & Wieser, W.. 1993. Metabolic responses to food-deprivation and refeeding in juveniles of Rutilus rutilus (Teleostei, Cyprinidae). Environmental Biology of Fishes 36:73–81.CrossRefGoogle Scholar
Meroz-Fine, E., Shefer, S. & Ilan, M.. 2005. Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Marine Biology 147:243–50.CrossRefGoogle Scholar
Mesibov, R. 2005. A new genus of burrowing and cave-dwelling millipedes (Diplopoda: Polydesmida: Dalodesmidae) from Tasmania, Australia. Zootaxa 1034:21–42.Google Scholar
Messana, G. 2004. Africa: biospeleology, pp. 24–25, in: Gunn, J. (ed.) Encyclopedia of Caves and Karst Science. New York: Fitzroy Dearborn.Google Scholar
Messana, G., Baratti, M. & Benvenuti, D.. 2002. Pongycarcinia xiphidiourus n. gen. n. sp., a new Brazilian Calabozoidae (Crustacea, Isopoda). Tropical Zoology 15:243–52.CrossRefGoogle Scholar
Meyer-Rochow, V. B. & Liddle, A. R.. 1988. Structure and function of the eyes of two species of opilioid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proceedings of the Royal Society of London, Series B 233:293–319.CrossRefGoogle Scholar
Mickleburgh, S. P., Hutson, A. M. & Racey, P. A.. 2002. A review of the global conservation status of bats. Oryx 36:18–34.CrossRefGoogle Scholar
Midriak, R. & Liptak, J.. 1995. Erosion and reforestation of abandoned lands in the Slovak Karst Biosphere Reserve. Ekologia-Bratislava 14:111–24.Google Scholar
Milanovich, J. R., Trauth, S. E., Jordan, R. R. & Saugey, D. A.. 2006. Fecundity, reproductive ecology, and influence of precipitation on clutch size in the western slimy salamander (Plethodon albagula). Herpetologica 62:292–301.CrossRefGoogle Scholar
Milanovic, P. 2002. The environmental impacts of human activities and engineering constructions in karst regions. Episodes 25:13–21.Google Scholar
Miller, J. A. 2005. Cave adaptation in the spider genus Anthrobia (Araneae, Linyphiidae, Erigoninae). Zoologica Scripta 34:565–92.CrossRefGoogle Scholar
Minio-Paluello, A. 1970. Aristotle, pp. 250–81, in: Gilliespie, C. C. (ed.) Dictionary of Scientific Biography, vol. 1. New York: Scribner.Google Scholar
Miquelarena, A., Ortubay, S. & Cussac, V.. 2005. Morphology, osteology and reductions in the ontogeny of the scaleless characid Gymnocharacinus bergi. Journal of Applied Ichthyology 21:511–19.CrossRefGoogle Scholar
,Missouri State Parks and Historic Sites. Rock State Memorial Park. Accessed 11 April 2006. http://www.mostateparks.com/rockbridge/geninfo.htm.
Mitchell, F. S., Onorato, D. P., Hellgren, E. C., Skiles, J. R. & Harveson, L. A.. 2005. Winter ecology of American black bears in a desert montane island. Wildlife Society Bulletin 33:164–71.CrossRefGoogle Scholar
Mitchell, R. W. 1970. Cave adapted flatworms of Texas – systematics, natural history, and responses to light and temperature. American Zoologist 10:547.Google Scholar
Mitchell, R. W. & Peck, S. B.. 1977. Typhlochactas sylvestris, a new eyeless scorpion from Montane forest litter in Mexico (Scorpionida, Chactidae, Typhlochactinae). Journal of Arachnology 5:159–68.Google Scholar
Mitchell, R. W., Russel, W. H. & Elliot, W. R.. 1977. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution. Special Publications No. 12. Lubbock, TX: Texas University Press.Google Scholar
Mivart, St. G. J. 1871. Genesis of Species. London: Macmillan & Co.CrossRefGoogle Scholar
Mohr, C. E. 1953. Animals that live in Pennsylvania caves. National Speleological Society Bulletin 15:15–23.Google Scholar
Molinari, J., Gutierrez, E. E., Ascencao, A. A.et al. 2005. Predation by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. Caribbean Journal of Science 41:340–6.Google Scholar
Monod, J. 1970. Le Hasard et la Necessité. Paris: Seuil.Google Scholar
Montalembert, M.-R. 1748. Observations de physique générale. Histoire de l' Académie Royale des Sciences 1748:27–8.Google Scholar
Moore, J. 1996. Survey of the biota and trophic interactions within Wind Cave and Jewel Cave, South Dakota: Final Report. University of Northern Colorado. Accessed 11 April 2006. http://www.nps.gov/wica/Abstract-Moore Survey_ of_the_Biota_and_Trophic_Interactions_Within_Wind_Cave_and_Jewel_Cave.htm.
Moore-Landecker, E. 1996. Fundamentals of the Fungi. New York: Prentice-Hall.Google Scholar
Moraes, R., Landis, W. G. & Molander, S.. 2002. Regional risk assessment of a Brazilian rain forest reserve. Human and Ecological Risk Assessment 8:1779–803.CrossRefGoogle Scholar
Moravec, F., Scholz, T., VivasRodriguez, C., VargasVazquez, J. & Mendoza-Franco, E.. 1996. Systematic status and first description of male of Dujardinia cenotae Pearse, 1936 [equals Hysterothylacium cenotae (Pearse, 1936) Moravec et al. 1995] (Nematoda Anisakidae). Systematic Parasitology 33:143–8.CrossRefGoogle Scholar
Moraz, M. L. & Linquist, E. E.. 1998. Coprozerconidae, a new family of zerconoid mites from North America (Acari: Mesostigmata: Zerconoidea). Acarologia 39:291–313.Google Scholar
Moraza, M. L. 2004. Rhodacarella, a new genus of Rhodacaridae mites from North America (Acari: Mesostigmata: Rhodacaridae). Zootaxa 470:1–10.CrossRefGoogle Scholar
Moraza, M. L. & Lindquist, E. E.. 1998. Coprozerconidae, a new family of Zerconoid mites from North America (Acari: Megostigmata: Zerconoidea). Acarologia 39:291–313.Google Scholar
Moreno-Valdez, A., Honeycutt, R. L. & Grant, W. E.. 2004. Colony dynamics of Leptonycteris nivalis (Mexican long-nosed bat) related to flowering agave in Northern Mexico. Journal of Mammalogy 85:453–9.2.0.CO;2>CrossRefGoogle Scholar
Morgan, R. 1943. Caves in world history. Bulletin of the National Speleological Society 5:1–16.Google Scholar
Morris, P. J. 1997. Louis Agassiz's arguments against Darwinism and his additions to the French translation of the Essay on Classification. Journal of the History of Biology 30:121–34.CrossRefGoogle Scholar
Morton, B., Velkovrh, F. & Sket, B.. 1998. Biology and anatomy of the ‘living fossil’ Congeria kusceri (Bivalvia: Dreissenidae) from subterranean rivers and caves in the Dinaric karst of the former Yugoslavia. Journal of Zoology 245:147–74.Google Scholar
Motas, C. 1962. Emil G. Racovitza: founder of biospeleology. National Speleological Society Bulletin 24:3–8.Google Scholar
Muchmore, W. B. 1997. Tuberochernes (Psuedoscorpionida, Chernetidae), a new genus with species in caves in California and Arizona. Journal of Arachnology 25:206–12.Google Scholar
Muchmore, W. B. 2001. An unusual new species of Mundochthonius from a cave in Colorado, with comments on Mundochthonius montanus (Pseudoscorpiones, Chthoniidae). Journal of Arachnology 29:135–40.CrossRefGoogle Scholar
Muchmore, W. B. & Pape, R. B.. 1999. Description of an eyeless, cavernicolous Albiorix (Pseudoscorpionida: Ideoronidae) in Arizona, with observations on its biology and ecology. The Southwestern Naturalist 44:138–47.Google Scholar
Murakami, Y. 1975. The cave myriapods of the Ryukyu islands, Japan. Part 1. Bulletin of the National Science Museum Series A 1:85–113.Google Scholar
Mylroie, J & Tronvig, K.. 1998. Karst Waters Institute creates top ten list of endangered karst ecosystems. National Speleological Society News (February):41–3.Google Scholar
Mystakidou, K., Tsilika, E., Parpa, E., Katsouda, E. & Vlahos, L.. 2004. Death and grief in the Greek culture. Omega, Journal of Death and Dying 50:23–34.CrossRefGoogle Scholar
,National Park Service. 2005. Cave biology, Sequoia and Kings Canyon National Parks. http://www.nps.gov/seki/snrm/wildlife/cave_biology.htm.
Nealson, K. H. & Conrad, P. G.. 1999. Life: past, present and future. Philosophical Transactions of the Royal Society of London Series B 354:1923–39.CrossRefGoogle ScholarPubMed
Neely, D. A. & Mayden, R. L.. 2003. Phylogenetic relationships, diversity, and zoogeography of western Cottus. San Diego, CA: American Fisheries Society, Western Division.Google Scholar
Nelson, J. S. 2006. Fishes of the World. New York: John Wiley & Son.Google Scholar
Nevo, E. 1979. Adaptive convergence and divergence of subterranean mammals. Annual Review of Ecology and Systematics 10:269–308.CrossRefGoogle Scholar
Ng, P. K. L. 2002a. New species of cavernicolous crabs of the genus Sesarmoides from the Western Pacific, with a key to the genus (Crustacea: Decapoda: Brachyura: Sesarmidae). Raffles Bulletin of Zoology 50:419–35.Google Scholar
Ng, P. K. L. 2002b. On a new species of cavernicolous Neoliomera (Crustacea: Decapoda: Brachyura: Xanthidae) from Christmas Island and Ryukyus, Japan. Raffles Bulletin of Zoology 50:95–9.Google Scholar
Nichol, D. 1998. Sinkholes at Glan Llyn on the A55 North Wales Coast Road, UK. Engineering Geology 50:101–9.CrossRefGoogle Scholar
Nicholas, G. 1960. Checklist of macroscopic troglobitic organisms of the United States. American Midland Naturalist. 64:123–60.CrossRefGoogle Scholar
Nicholas, G. 1962. Checklist of troglobitic organisms of Middle America. American Midland Naturalist 68:165–88.CrossRefGoogle Scholar
Norman, J. R. 1926. A new blind catfish from Trinidad, with a list of the blind cave-fishes. Annals and Magazine of Natural History 18:324–31.CrossRefGoogle Scholar
Northup, D. E., Barns, S. M., Yu, L. E.et al. 2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environmental Microbiology 5:1071–86.CrossRefGoogle ScholarPubMed
Northup, D. E., Dahm, C. N., Melin, L. A.et al. 2000. Evidence for geomicrobiological interactions in Guadalupe caves. Journal of Cave and Karst Studies 62:80–90.Google Scholar
Northup, D. E. & Lavoie, K. H.. 2001. Geomicrobiology of caves: a review. Geomicrobiology Journal 18:199–222.Google Scholar
Notenboom, J. 1991. Marine regressions and the evolution of groundwater dwelling amphipods (in mammals and molluscs, Crustacea and correlations). Journal of Biogeography 18:437–54.CrossRefGoogle Scholar
Novak, T., Sambol, J. & Janžerovič, F.. 2003. Faunal dynamics in the Železna jama Cave. Acta Carsologica 33/2:249–67.Google Scholar
Nussac, L. de. 1892. Essai Élémentaire de Spéologie Naturelle du Bas-Limousin (départment de la Corrèze). Brive, France: Roche.Google Scholar
O'Donnell, C. F. J. 2002. Variability in numbers of long-tailed bats (Chalinolobus tuberculatus) roosting in Grand Canyon Cave, New Zealand: implications for monitoring population trends. New Zealand Journal of Zoology 29:273–84.CrossRefGoogle Scholar
Okuno, J. 1999. Palaemonella hachijo, a new species of shrimp (Crustacea: Decapoda: Palaemonidae) from a submarine cave in southern Japan. Proceedings of the Biological Society of Washington 112:739–45.Google Scholar
O'Malley, R., King, T., Turner, C. S.et al. 2006. The diversity and distribution of the fruit bat fauna (Mammalia, Chiroptera, Megachiroptera) of Danjugan Island, Cauayan, Negros Occidental, Philippines (with notes on the Microchiroptera). Biodiversity and Conservation 15:43–56.CrossRefGoogle Scholar
Olivier, G. 1967. Teilhard de Chardin et le transformisme. Annales de l'Université de Paris 37:358–65.Google Scholar
Oppenheimer, J. M. 1982. Ernest Heinrich Haeckel as an intermediary in the transmutation of an idea. Proceedings of the American Philosophical Society 126:347–55.Google Scholar
Osawa, M., Fugita, Y. & Okuno, J.. 2006. Two new species of Pagurixus (Crustacea: Decapoda: Anomura: Paguridae) from submarine caves of the Ryukyu Islands, southwestern Japan. Zootaxa 1148:27–45.Google Scholar
Osawa, M. & Takeda, M.. 2004. Hermit crabs (Crustacea: Decapoda: Anomura: Paguroidea) from submarine caves in the Ryukyu Islands, south-western Japan. Journal of Natural History 38:1097–132.CrossRefGoogle Scholar
Osborn, H. F. 1934. Aristogenesis, the Creative Principle in the Origin of Species. New York.Google ScholarPubMed
Osella, G. & Zuppa, A. M.. 2006. Otiorhynchus (Podonebistus) gasparoi n. sp., a blind weevil from Greece (Coleoptera, Curculionidae, Entiminae, Otiorhynchini). Revue Suisse de Zoologie 113:67–75.CrossRefGoogle Scholar
Ozbek, M. & Guloglu, M. O.. 2005. A new cave amphipod from Turkey: Gammarus ustaoglui sp nov. Israel Journal of Zoology 51:147–55.CrossRefGoogle Scholar
Packard, A. S. 1871. The Mammoth Cave and its inhabitants. American Naturalist 5:739–61.CrossRefGoogle Scholar
Packard, A. S. 1888. On certain factors of evolution. American Naturalist 22:808–21.Google Scholar
Packard, A. 1901. Lamarck, the Founder of Evolution, his Life and Work. New York: Longmans, Green, and Co.CrossRefGoogle Scholar
Packard, A. S. & Putnam, F. W.. 1872. The Mammoth Cave and its Inhabitants. Salem: Naturalist Agency.Google Scholar
Pansini, M. & Pesce, G. L.. 1998. Higginsia ciccaresei sp. nov. (Porifera: Demospongiae) from a marine cave on the Apulian coast (Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 78:1083–91.CrossRefGoogle Scholar
Parise, K., Qiriazi, P. & Sala, S.. 2004. Natural and anthropogenic hazards in karst areas of Albania. Natural Hazards and Earth System Sciences 4:569–81.CrossRefGoogle Scholar
Parsons, K. N., Jones, G., Davidson-Watts, I. & Greenaway, F.. 2003. Swarming of bats at underground sites in Britain – implications for conservation. Biological Conservation 111:63–70.CrossRefGoogle Scholar
Peck, S. B. 1968. A new cave catopid beetle from Mexico, with a discussion of its evolution. Psyche 75:91–8.CrossRefGoogle Scholar
Peck, S. B. 1970. The Catopinae (Coleoptera; Leiodidae) of Puerto Rico. Psyche 77:237–42.CrossRefGoogle Scholar
Peck, S. B. 1974. The invertebrate fauna of tropical American caves, part II: Puerto Rico, an ecological and zoogeographic analysis. Biotropica 6:14–31.CrossRefGoogle Scholar
Peck, S. B. 1975. A review of the New World Onychophora, with the description of a new cavernicolous genus and species from Jamaica. Psyche 82:341–58.CrossRefGoogle Scholar
Peck, S. B. 1988. A review of the cave fauna of Canada, and the composition and ecology of the invertebrate fauna of caves and mines in Ontario. Canadian Journal of Zoology 66:1197–213.CrossRefGoogle Scholar
Peck, S. B. 1990. Eyeless arthropods of the Galapagos Islands, Ecuador: composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago. Biotropica 22:366–81.CrossRefGoogle Scholar
Peck, S. B. 1998. A summary of diversity and distribution of the obligate cave-inhabiting faunas of the United States and Canada. Journal of Cave and Karst Studies 60:18–26.Google Scholar
Peck, S. B. & Gnaspini, P.. 1997. Ptomaphagus inyoensis n.sp., a new microphthalmic montane beetle from California (Coleoptera; Leiodidae; Cholevinae; Ptomaphagini). Canadian Entomologist 129:769–76.CrossRefGoogle Scholar
Peck, S. B., Ruiz-Baliu, A. E. & Gonzalez, G. F. Garces. 1998. The cave inhabiting beetles of Cuba (Insecta: Coleoptera): diversity, distribution, and ecology. Journal of Cave and Karst Studies 60:156–66.Google Scholar
Penalba, M. C., Molina-Ferrer, F. & Rodriguez, L. L.. 2006. Resource availability, population dynamics and diet of the nectar-feeding bat Leptonycteris curasoae in Guaymas, Sonora, Mexico. Biodiversity and Conservation 15:3017–34.CrossRefGoogle Scholar
Pengelly, W., Busk, G., Evans, J.et al. 1873. Report on the exploration of Brixham Cave, conducted by a committee of the Geological Society, and under the superintendence of Wm. Pengelly, Esq., F.R.S., aided by a local committee; with descriptions of the animal remains by George Busk, Esq., F.R.S., and of the flint implements by John Evans, Esq., F.R.S. Joseph Prestwich, F.R.S., F.G.S., &c., Reporter. Philosophical Transactions of the Royal Society of London 163:471–572.CrossRefGoogle Scholar
Penuelas, J. & Filella, I.. 2003. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environmental and Experimental Botany 49:201–8.CrossRefGoogle Scholar
Perez, T. 1996. Particle uptake by a hexactinellid sponge, Oopsacas minuta (Leucopsacasidae): the role of the reticulum. Comptes Rendus de l'Academie des Sciences, Serie III 319:385–91.Google Scholar
Perez, T., Vacelet, J., Bitar, G. & Zibrowius, H.. 2004. Two new lithistids (Porifera: Demospongiae) from a shallow eastern Mediterranean cave (Lebanon). Journal of the Marine Biological Association of the United Kingdom 84:15–24.CrossRefGoogle Scholar
Pesce, G. L. & Iliffe, T. M.. 2002. New records of cave-dwelling mysids from the Bahamas and Mexico with description of Palaumysis bahamensis n. sp. (Crustacea: Mysidacea). Journal of Natural History 36:265–78.CrossRefGoogle Scholar
Peters, N. & Peters, G.. 1973. Problemes genetiques de l'evolution regressive des cavernicoles, pp. 187–201, in: Schroeder, L.H. (ed.) Genetics and Mutagenesis in Fish. New York: Springer-Verlag.Google Scholar
Peters, N. & Peters, G.. 1986. Zur genetischen Interpretation morphologischer Gesetzmussigkeiten der degenerativen Evolution. Untersuchungen am Auge einer Hohlenform von Poecilia sphenops (Poeciliidae, Pisces). Zeitschrift für Morphologie und Ökologie der Tiere 62:211–44.CrossRefGoogle Scholar
Petit, S., Rojer, A. & Pors, L.. 2006. Surveying bats for conservation: the status of cave-dwelling bats on Curacao from 1993 to 2003. Animal Conservation 9:207–17.CrossRefGoogle Scholar
Petram, W., Knauer, F. & Kaczensky, P.. 2004. Human influence on the choice of winter dens by European brown bears in Slovenia. Biological Conservation 119:129–36.CrossRefGoogle Scholar
Pfeiffer, W. 1966. Uber die Vererbung des Schreckreaktion bei Astyanax (Characidae, Pisces). Zeitschrift für Vererbungslehre 98:97–105.Google Scholar
Pflieger, W. L. 1997. The Fishes of Missouri, revised edition. Jefferson City, MO: Missouri Department of Conservation.Google Scholar
Pigliucci, M. 2001a. Phenotypic Plasticity. Beyond Nature and Nurture. Baltimore, MD: The John Hopkins University Press.Google Scholar
Pigliucci, M. 2001b. Characters and environment, pp. 363–88, in: Wagner, G.P. (ed.) The Character Concept in Evolutionary Biology. San Diego, CA: Academic Press.Google Scholar
Pilet, P. E. 1973. Bennet, Charles, pp. 286–7, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 2. New York: Scribner.Google Scholar
Pinto da Rocha, R. & Bonaldo, A. B.. 2007. A new species of Cryptocellus (Arachnida, Ricinulei) from Oriental Amazonia. Zootaxa 1386:47–51.Google Scholar
Pinto da Rocha, R. & Kury, A. B.. 2003. Third species of Guasiniidae (Opiliones, Laniatores) with coments on familial relationships. Journal of Arachnology 31:394–9.CrossRefGoogle Scholar
Pinto da Rocha, R., Machado, G. & Weygolt, P.. 2002. Two new species of Carinus (Simon, 1892) from Brazil with biological notes (Arachnida; Amblypygi; Charinidae). Journal of Natural History 36:107–18.CrossRefGoogle Scholar
Pipan, T., Blejec, A. & Brancelj, A.. 2006. Multivariate analysis of copepod assemblages in epikarstic waters of some Slovenian caves. Hydrobiologia 559:213–23.CrossRefGoogle Scholar
Plate, L. H. 1913. Selektionsprinzip und Probleme der Artbildung; ein Handbuch des Darwinismus. Leipzig: Engelmann.Google Scholar
Plug, I. 2004. Resource exploitation: animal use during the middle stone age at Sibudu Cave, Kwazulu-Natal. South African Journal of Science 100:151–8.Google Scholar
Poey, F. 1858. Memorias sobre la Historia Natural de la Isla de Cuba, 2 volumes. La Habana: Barcina.Google Scholar
Pohlman, J. W., Iliffe, T. M. & Cifuentes, L. A.. 1997. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Marine Ecology Progress Series 155:17–27.CrossRefGoogle Scholar
Poly, W. J. 2001. Nontroglobitic fishes in Bruffey-Hills Creek Cave, West Virginia, and other caves worldwide. Environmental Biology of Fishes 62:73–83.CrossRefGoogle Scholar
Ponder, W. F., Clark, S. A., Eberhard, S. & Studdert, J. B.. 2005. A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae sl). Zootaxa 1074:3–66.CrossRefGoogle Scholar
Ponder, W. F. & Lindberg, D. R.. 2008. Molluscan evolution and phylogeny, pp. 1–17, in: Ponder, W. F. & Lindberg, D. R. (eds.) Phylogeny and Evolution of Mollusca. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Potter, V. R. 1968. Teilhard de Chardin and the concept of purpose. Zygon 3:367–76.CrossRefGoogle Scholar
Poulson, T. L. 1963. Cave adaptation in amblyopsid fishes. American Midland Naturalist 70:257–90.CrossRefGoogle Scholar
Poulson, T. L. 1964. Animals in aquatic environments: animals in caves, pp. 749–71, in: Dill, D. B. (ed.) Handbook of Physiology. Washington, D.C.: American Physiological Society.Google Scholar
Poulson, T. L. 2001. Adaptations of cave fishes with some comparisons to deep-sea fishes. Environmental Biology of Fishes 62:345–64.CrossRefGoogle Scholar
Poulson, T. L., Lavoie, K. H. & Helf, K.. 1995. Long-term effects of weather on the cricket (Hadenoecus subterraneus, Orthoptera, Rhaphidophoridae) guano community in Mammoth Cave National Park. American Midland Naturalist 134:226–36.CrossRefGoogle Scholar
Poulson, T. L. & White, W. B.. 1969. The cave environment. Science 165:971–81.CrossRefGoogle ScholarPubMed
Preciado, I. & Maldonado, M.. 2005. Reassessing the spatial relationship between sponges and macroalgae in sublittoral rocky bottoms: a descriptive approach. Helgoland Marine Research 59:141–50.CrossRefGoogle Scholar
Price, J. J., Johson, K. P., Bush, S. E. & Clayton, D. H.. 2005. Phylogenetic relationsips of the Papuan Swiftlet Aerodramus papuensis and implications for the evolution of avian echolocation. Ibis 147:790–6.CrossRefGoogle Scholar
Price, J. J., Johnson, K. P., & Clayton, D. H.. 2004. The evolution of echolocation in swiftlets. Journal of Avian Biology 35:135–43.CrossRefGoogle Scholar
Price, L. 1996. The cave racer – Elaphe taeniura. Malayan Naturalist 50:24–5.Google Scholar
Prous, X., Ferreira, R. L. & Martins, R. P.. 2004. Ecotone delimitation: epigean-hypogean transition in cave ecosystems. Austral Ecology 29:374–82.CrossRefGoogle Scholar
Pugh, M. & Altringham, J. D.. 2005. The effect of gates on cave entry by swarming bats. Acta Chiropterologica 7:293–9.CrossRefGoogle Scholar
Pulido-Bosch, A., Calaforra, J. M., Pulido-Leboeuf, P. & Torres-García, S.. 2004. Impact of quarrying gypsum in a semidesert karstic area (Sorbas, SE Spain). Environmental Geology 46:583–90.CrossRefGoogle Scholar
Pulido-Bosch, A., Martín-Rosales, W., López-Chicano, M., Rodríguez-Navarro, C. M. & Vallejos, A.. 1997. Human impact in a tourist karstic cave (Aracena, Spain). Environmental Geology 31:142–9.CrossRefGoogle Scholar
Putnam, F. W. 1872. The blind fishes of the Mammoth Cave and their allies. American Naturalist 6:6–30.CrossRefGoogle Scholar
Putnam, F. W. 1875. On some of the habits of the blind crawfish, Cambarus pellucidus, and the reproduction of lost parts. Proceedings of the Boston Society of Natural History 18:16–19.Google Scholar
Qian, X.-M. & Li, B.. 2002. Relevant record of the blind fish in Yi Ban Lu. China Historical Materials of Science and Technology 23:81–2.Google Scholar
Rabaud, E. 1941. Introduction aux Sciences Biologiques. Paris: Armand Colin.Google Scholar
Racovitza, E. G. 1907. Éssai sur les problèmes biospéleologiques. Archives du Zoologie Experimentale et Generale 6:371–488.Google Scholar
Racovitza, E. G. 2000. Ice caves in temperate regions, pp. 561–8, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Rafinesque, C. S. 1815. Analyse de la Nature, or, Tableau de l'Univers et des Corps Organisés. Palermo, Sicily: published by the author.CrossRefGoogle Scholar
Rafinesque, C. S. 1822. On two salamanders of Kentucky. Kentucky Gazette, Lexington (n.s.) 1:3.Google Scholar
Rafinesque, C. S. 1832. The caves of Kentucky. Atlantic Journal and Friend of Knowledge 1:27–30.Google Scholar
Rambla, M. & Juberthie, C.. 1994. Opiliones, pp. 215–230, in: Juberthie, C. & Decu, V. (eds.) Enciclopaedia Biospeologica, vol. 1. Moulis and Bucarest: Société de Biospéologie.Google Scholar
Raper, K. B. 1984. The Dictyostelids. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Rasquin, P. 1947. Progressive pigmentary regression in fishes associated with cave environments. Zoologica 32:53–42.Google ScholarPubMed
Rasquin, P. 1949. Spontaneous depigmentation in the catfish Ameirus nebulosus. Copeia 1949:246–51.CrossRefGoogle Scholar
Reddell, J. R. 1982. A checklist of the cave fauna of Mexico. VII. Northern Mexico. Association Mexican Cave Studies Bulletin 8:249–83.Google Scholar
Reddell, J. R. & Veni, G.. 1996. Biology of the Chiquibil Cave System, Belize and Guatemala. Journal of Cave and Karst Studies 58:131–8.Google Scholar
Reeves, W. K. 2000. New faunal and fungal records from caves in Georgia, USA. Journal of Cave and Karst Studies 62:169–79.Google Scholar
Reeves, W. K. 2001. Bionomics of Cimex adjunctus (Heteroptera: Cimicidae) in a maternity cave of Myotis austroriparius (Chiroptera: Vespertilionidae) (South Carolina, USA). Journal of Entomological Science 36:74–7.CrossRefGoogle Scholar
Reeves, W. K., Durden, L. A. & Wrenn, W. J.. 2004. Ectoparasitic chiggers (Acari: Trombiculidae, Leeuwenhoekiidae), lice (Phthiraptera), and Hemiptera (Cimicidae and Reduviidae) from South Carolina, USA. Zootaxa 647:1–20.CrossRefGoogle Scholar
Reeves, W. K. & McCreadie, J. W.. 2001. Population ecology of cavernicoles associated with carrion in caves of Georgia, USA. Journal of Entomological Science 36:305–11.CrossRefGoogle Scholar
Reinhart, K., Ambler, J. & McGuffie, M.. 1985. Diet and parasitism at Dust Devil Cave. American Antiquity 50:819–24.CrossRefGoogle Scholar
Resetarits, S. J.. 1986. Ecology of cave use by the frog Rana palustris. American Midland Naturalist 116:256–66.CrossRefGoogle Scholar
Rhodes, R. 1962. The evolution of the crayfishes of the genus Orconectes. Ohio Journal of Science 62:65–96.Google Scholar
Richards, R. 1992. The Meaning of Evolution. The Morphological Construction and Ideological Reconstruction of Darwin's Theory. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
Richards, R. 2002. The Romantic Conception of Life. Science and Philosophy in the age of Goethe. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
Richards, R. L. 1972. The woodrat in Indiana: recent fossils. Proceedings of the Indiana Academy of Science 81:370–5.Google Scholar
Richards, R. L. 1980. Rice rat (Oryzomys cf. palustris) remains from southern Indiana caves. Proceedings of the Indiana Academy of Science 89:425–31.Google Scholar
Richards, R. L. 1982. Hunting Indiana bears. Outdoor Indiana 47:16–18.Google Scholar
Richards, R. L. 1983. Getting down to the bear bones. Outdoor Indiana 48:32–4.Google Scholar
Riedl, R. 1966. Biologie der Meereshöhlen: Topographie, Faunistik und Ökologie eines unterseeischen Lebensraumes : eine Monographie. Hamburg: Paul Parey.Google Scholar
Rigotti, F. 1986. Biology and society in the Age of Enlightenment. Journal of the History of Ideas 47:215–33.CrossRefGoogle ScholarPubMed
Rippon, J. W. 1988. Medical Mycology. The Pathogenic Fungi and the Pathogenic Actinomycetes, 3rd edition. Philadelphia, PA: W. B. Saunders.Google Scholar
Risse, G. B. 1971. Döllinger, Ignaz, pp. 146–7, in: Gilliespie, C.C. (ed.) Dictionary of Scientific Biography, vol. 4. New York: Scribner.Google Scholar
Rivera, M. A. J., Howarth, F. G., Taita, S. & Roderick, G. K.. 2002. Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts?Molecular Phylogenetics and Evolution 25:1–9.CrossRefGoogle ScholarPubMed
Roberts, L. P. 2000. Deep in the heart of Texas. Endangered Species Bulletin 25:14–15.Google Scholar
Robison, H. W. & Buchanan, T. M.. 1988. Fishes of Arkansas. Fayetteville, AK: Arkansas University Press.Google Scholar
Rodriguez, G. A. & Reagan, D. P.. 1984. Bat predation by the Puerto Rican boa, Epicrates inornatus. Copeia 1984:219–20.CrossRefGoogle Scholar
Rodriguez-Duran, A. 1998. Nonrandom aggregations and distribution of cave-dwelling bats in Puerto Rico. Journal of Mammalogy 79:141–6.CrossRefGoogle Scholar
Roff, D. A. 1990. The evolution of flightlessness in insects. Evolution 60:389–421.Google Scholar
Roger, J. 1973. Buffon, Georges-Louis Leclerc, Compte de, pp. 576–82, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 2. New York: Scribner.Google Scholar
Roger, J. 1997. Buffon. A Life in Natural History. Ithaca, NY: Cornell University Press.Google Scholar
Rogowitz, G. L., Candelaria, C. L., Denizard, L. E. & Melendez, L. J.. 2001. Seasonal reproduction of a neotropical frog, the cave coqui (Eleutherodactylus cooki). Copeia 2001:542–7.CrossRefGoogle Scholar
Rojas, L. M., Ramirez, Y., McNeil, R., Mitchell, M. & Marin, G.. 2004. Retinal morphology and electrophysiology of two caprimulgiformes birds: the cave-living and nocturnal oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging common pauraque (Nyctidromus albicollis). Brain Behavior and Evolution 64:19–33.CrossRefGoogle Scholar
Roldan, M., Clavero, E., Canals, T., et al. 2004. Distribution of phototrophic biofilms in cavities (Garraf, Spain). Nova Hedwigia 78:329–51.CrossRefGoogle Scholar
Romero, A. 1983. Introgressive hybridization in a population of Astyanax fasciatus (Pisces: Characidae) at La Cueva Chica. National Speleological Society Bulletin 45:81–5.Google Scholar
Romero, A. 1984a. Behavior in an “intermediate” population of the subterranean-dwelling characid Astyanax fasciatus. Environmental Biology of Fishes 10:203–7.CrossRefGoogle Scholar
Romero, A. 1984b. Charles Marcus Breder, Jr. 1897–1983. National Speleological Society News 42:8.Google Scholar
Romero, A. 1984c. Cave colonization by fish: role of bat predation. American Midland Naturalist 113:7–12.CrossRefGoogle Scholar
Romero, A. 1984d. Responses to light in cave and surface populations of Astyanax fasciatus (Pisces: Characidae): an evolutionary interpretation. Ph.D. dissertation. Coral Gables, FL: University of Miami.Google Scholar
Romero, A. 1985a. Cave colonization by fish: role of bat predation. American Midland Naturalist 113:7–12.CrossRefGoogle Scholar
Romero, A. 1985b. Can evolution regress? National Speleological Society Bulletin 47:86–8.Google Scholar
Romero, A 1985c. Ontogenetic change in phototactic responses of surface and cave populations of Astyanax fasciatus (Pisces: Characidae). Copeia 1985:1004–11.CrossRefGoogle Scholar
Romero, A. 1986a. Charles Breder and the Mexican blind characid. National Speleological Society News 44:16–18.Google Scholar
Romero, A. 1986b. He wanted to know them all: Eigenmann and his blind vertebrates. National Speleological Society News 44:379–81.Google Scholar
Romero, A. 1998a. Threatened fishes of the world: Amblyopsis rosae (Eigenmann, 1842) (Amblyopsidae). Environmental Biology of Fishes 52:434.CrossRefGoogle Scholar
Romero, A. 1998b. Threatened fishes of the world: Speoplatyrhinus poulsoni Cooper and Kuehne, 1974 (Amblyopsidae). Environmental Biology of Fishes 53:293–4.CrossRefGoogle Scholar
Romero, A. 1999a. The blind cave fish that never was. National Speleological Society News 57:180–1.Google Scholar
Romero, A. 1999b. Myth and reality of the alleged blind cave fish from Pennsylvania. Journal of Spelean History 33:67–75.Google Scholar
Romero, A. 2000. The speleologist who wrote too much. National Speleological Society News 58:4–5.Google Scholar
Romero, A. 2001a. Evolution is opportunistic, not directional. BioScience 51:2–3.CrossRefGoogle Scholar
Romero, A. 2001b. Scientists prefer them blind: the history of hypogean fish research. Environmental Biology of Fishes 62:43–71.CrossRefGoogle Scholar
Romero, A. 2002a. The life and work of a little known biospeleologist: Theodor Tellkampf. Journal of Spelean History 36:68–76.Google Scholar
Romero, A. 2002b. Between the first blind cave fish and the last of the Mohicans: the scientific romanticism of James E. DeKay. Journal of Spelean History 36:19–29.Google Scholar
Romero, A. 2004. Pisces: Amblyopsidae, pp. 595–7, in: Gunn, J. (ed.) Encyclopedia of Cave and Karst Science. London: Fitzroy Dearborn Publishers.Google Scholar
Romero, A. 2007. The discovery of the first Cuban blind cave fish: the untold story. Journal of Spelean History 41:16–22.Google Scholar
Romero, A. 2008. Typological thinking strikes again. Environmental Biology of Fishes 81:359–63.CrossRefGoogle Scholar
Romero, A. & Creswell, J.. 2000. In search of the elusive ‘eyeless’ cave fish of Trinidad, W.I. National Speleological Society News 58:282–3.Google Scholar
Romero, A. & Green, S. M.. 2005. The end of regressive evolution: examining and interpreting the evidence from cave fishes. Journal of Fish Biology 67:3–32.CrossRefGoogle Scholar
Romero, A., Green, S. M., Romero, A., Lelonek, M. M. & Stropnick, K. C.. 2003. One eye but no vision: troglomorphic Astyanax fasciatus (Pisces: Characidae) with induced eyes do not respond to light. Journal of Experimental Zoology (Molecular and Developmental Evolution) 300B:72–9.CrossRefGoogle Scholar
Romero, A., Jeffery, W. & Yamamoto, Y.. 2002a. When cave fish see the light: reaction norm to light exposure during development in epigean, troglomorphic, and hybrids of Astyanax fasciatus, p. 225, in: Program Book and Abstracts. Joint Meeting of Ichthyologists and Herpetologists, July 3–8, 2002. Kansas City, MO: American Society of Ichthyologists and Herpetologists.Google Scholar
Romero, A. & Lomax, Z.. 2000. Jacques Besson, cave eels and other alleged European fishes. Journal of Spelean History 34:72–7.Google Scholar
Romero, A. & Paulson, K. M.. 2001a. It's a wonderful hypogean life: a guide to the troglomorphic fishes of the world. Environmental Biology of Fishes 62:13–41.CrossRefGoogle Scholar
Romero, A. & Paulson, K. M.. 2001b. Scales not necessary: the evolution of scalelessness among troglomorphic fishes, p.114, in: Program Book and Abstracts. Joint Meeting of Ichthyologists and Herpetologists. 81st Annual Meeting of the American Society of Ichthyologists and Herpetologists. State College, Pennsylvania, July 5–10, 2001.Google Scholar
Romero, A. & Paulson, K. M.. 2001c. Unparalleled evolution: blindness, depigmentation, and scalelessness do not run hand in hand among troglomorphic fishes, p. 64, in: 2001 NSS Convention. A Cave Odyssey. July 23–27, 2001, Mount Vernon, Kentucky, Program Guide.Google Scholar
Romero, A. & Paulson, K. M.. 2001d. Humboldt's alleged subterranean fish from Ecuador. Journal of Spelean History 36:56–9.Google Scholar
Romero, A. & Romero, A.. 1999. On Cope, caves, and skeletons in the closet. National Speleological Society News 57:341–43.Google Scholar
Romero, A., Singh, A., McKie, A., Manna, M., Baker, R. & Paulson, K. M.. 2001. Return to the Cumaca Cave, Trinidad, W.I. National Speleological Society News 59:220–1.Google Scholar
Romero, A., Singh, A., McKie, A.et al. 2002b. Replacement of the troglomorphic population of Rhamdia quelen (Pisces: Pimelodidae) by an epigean population of the same species in the Cumaca Cave, Trinidad, W.I. Copeia 2002:938–42.CrossRefGoogle Scholar
Romero, A. & Woodward, J.. 2005. On white fish and black men: did Stephen Bishop really discover the blind cave fish of mammoth cave?Journal of Spelean History 39:23–32.Google Scholar
Romero, A., Zhao, Y. & Chen, Y.. 2008. The hypogean fishes of China. Abstract 0187. In Joint Meeting of Ichthyologists and Herpetologists Abstracts CD 2008.
Rossmässler, E. A. 1838–44. Iconographie der Land- und Süßwassermollusken, mit vorzüglicher Berücksichtigung der europäischen noch nicht abgebildeten Arten. 4 vols. Dresden, Leipzig: Arnold.Google Scholar
Roth, L. M. 1988. Some cavernicolous and epigean cockroaches with six new species, and a discussion of the Nocticolidae (Dictyoptera: Blattaria). Revue Suisse de Zoologie 95:297–321.CrossRefGoogle Scholar
Roth, V. L. 2001. Character replication, p. 10, in: Wagner, G. P. (ed.) The Character Concept in Evolutionary Biology. San Diego, CA: Academic Press.Google Scholar
Rowland, J. M. & Reddell, J. R.. 1979. The order Schizomida (Arachnida) in the New World. I. Protoschizomidae and Dumitrescoae group (Schizomidae: Schizomus). Journal of Arachnology 6:161–96.Google Scholar
Rowland, S. M. 2001. Archaeocyaths – a history of phylogenetic interpretation. Journal of Paleontology 75:1065–78.CrossRefGoogle Scholar
Rózkowski, J. 1998. Endangering of the Upper Jurassic karst-fissured aquifer in the Krakow Upland (southern Poland). Environmental Geology 33:274–8.Google Scholar
Rudwick, M. J. S. 1997. Georges Cuvier, Fossil Bones, and the Geological Catastrophes: New Translations and Interpretations of the Primary Texts. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Ruecker, H. W. 1988. A new species of the genus Holoparamecus Curtis Coleoptera Merophysidae from Curaçao, Netherlands Antilles. Revue Suisse de Zoologie 95:1027–30.CrossRefGoogle Scholar
Ruhberg, H. & Hamer, M. L.. 2005. A new species of Opisthopatus Purcell, 1899 (Onychophora: Peripatopsidae) from KwaZulu-Natal, South Africa. Zootaxa 1039:27–38.Google Scholar
Ruse, M. 1996. Monad to Man. The Concept of Progress in Evolutionary Biology. Cambridge, MA: Harvard University Press.Google Scholar
Ryckman, R. E. 1956. Parasitic and some nonparasitic arthropods from bat caves in Texas and Mexico. American Midland Naturalist 56:186–90.CrossRefGoogle Scholar
Sadoglu, P. 1957. Mendelian inheritance in the hybrids between the Mexican blind cave fishes and their overground ancestor. Verhandlungen Deutsche Zoologische Gesellschaft 1957:432–9.Google Scholar
Sand, W. 1997. Microbial mechanisms of deterioration of inorganic substrates – a general mechanistic overview. International Biodeterioration and Biodegredation 40:183–90.CrossRefGoogle Scholar
Sanford, W. F. 1965. Dana and Darwinism. Journal of the History of Ideas 26:531–46.CrossRefGoogle Scholar
Sankaran, R. 2001. The status and conservation of the Edible-nest Swiftlet (Collocalia fuciphaga) in the Andaman and Nicobar Islands. Biological Conservation 97:283–94.CrossRefGoogle Scholar
Santini, F. & Galleni, L.. 2001. Non-light based ecosystems and bioastronomy. Revista di Biologia 94:427–42.Google ScholarPubMed
Santos, F. H. & Gnaspini, P.. 2002. Notes on the foraging behavior of the Brazilian cave harvestman Goniosoma spelaeum (Opiliones, Gonyleptidae). Journal of Arachnology 30:177–80.CrossRefGoogle Scholar
Sara, M & Bavestrello, G.. 1995. Tethya omanensis, a remarkable new species from an Oman cave (Porifera, Demospongiae). Bollettino di Zoologia 62:23–7.CrossRefGoogle Scholar
Sarbu, S. M. 2000. Movile Cave: a chemoautotrophically based groundwater ecosystem, pp. 319–43, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Sarbu, S. M., Galdenzi, S., Menichetti, M. & Gentile, G.. 2000. Geology and biology of the Grotte di Frasassi (Frasassi Caves) in central Italy: an ecological multi-disciplinary study of a hypogenic underground karst system, pp. 361–81, in: Wilkens, H., Culver, D. C. & Humphries, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Sarbu, S. M., Kane, T. C. & Kinkle, B. K.. 1996. A chemoautotrophic based cave ecosystem. Science 272:1953–5.CrossRefGoogle ScholarPubMed
Sauro, U. 1993. Human impact on the karst of the Venetian Fore Alps, Italy. Environmental Geology 21:115–21.CrossRefGoogle Scholar
Sawicki, T. R., Holsinger, J. R., Ortiz, M. & Perez, A.. 2003. Bahadzia patilarga, a new species of subterranean amphipod crustacean (Hadziidae) from Cuba. Proceedings of the Biological Society of Washington 116:198–205.Google Scholar
Schabereiter-Gurtner, C., Saiz-Jimenez, C., Pinar, G., Lubitz, W. & Rolleke, S.. 2002. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiology Letters 211:7–11.CrossRefGoogle ScholarPubMed
Schaefer, S. A., Provenzano, F., Pinna, M. & Baskin, J. N.. 2005. New and noteworthy Venezuelan glanapterygine catfishes (Siluriformes, Trichomycteridae), with discussion of their biogeography and psammophily. American Museum Novitates 3496:1–27.CrossRefGoogle Scholar
Scheller, U. 1996. A new troglobitic species of Hanseniella Bagnall (Symphyla: Scutigerellidae) from Tasmania. Australian Journal of Entomology 35:203–7.CrossRefGoogle Scholar
Scheller, U., Curcic, B. P. M. & Marakov, S. E.. 1997. Pauropus furcifer Silvestri (Pauropodidae, Pauropoda): towards an adaptation for life in caves. Revue Suisse de Zoologie 104:517–22.CrossRefGoogle Scholar
Schemmel, C. 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax -Formen, ein Beitrag zur Evolution der Cavernicolen. Zeitschrift für Morphologie der Tiere 61:255–316.CrossRefGoogle Scholar
Schemmel, C. 1980. Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. Anoptichthys. An example of apparent monofactorial inheritance by polygenes. Zeitschrift für Tierpsychologie 53:9–22.CrossRefGoogle ScholarPubMed
Schilthuizen, M., Cabanban, A. S. & Haase, M.. 2005. Possible speciation with gene flow in tropical cave snails. Journal of Zoological Systematics and Evolutionary Research 43:133–8.CrossRefGoogle Scholar
Schiner, J. R. 1854. Fauna der Adelsberg, Lueger und Magdalener-grotte, p. 316, in: Schmidle, A. (ed.) Die Grotten und Hölen von Adelsberg, Lueg, Planina und Lass. Wien: Braunmüller.Google Scholar
Schiödte, J. C. 1849. Specimen Faunæ Subterraneae. Bidrag til den Underjordiske Fauna. Kjöbenhavn: Bianco Luno.Google Scholar
Schlagel, S. R. & Breder, C. M.. 1947. A study of oxygen consumption of blind and eyed cave characins in light and darkness. Zoologica 32:17–28.Google ScholarPubMed
Schmidl, A. 1850. Beitrag zur Höhlenkunde des Karst. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-Naturwissenschaftliche Klasse 5:464–79.Google Scholar
Schmidl, A. (ed.) 1854. Die Grotten und Höhlen von Adelsberg, Lueg, Planina und Laas. Wien, Austria: Wilh. Braumüller.
Schmidt, F. 1832. Beitrag zu Krain's fauna. Illÿrfches Blatt 21:9–10Google Scholar
Schwendinger, P. J. & Giribet, G.. 2005. The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19:297–323.CrossRefGoogle Scholar
Schwendinger, P. J., Giribet, G. & Steiner, H.. 2004. A remarkable new cave-dwelling Stylocellus (Opiliones, Cyphophthalmi) from peninsular Malaysia, with a discussion on taxonomic characters in the family Stylocellidae. Journal of Natural History 38:1421–35.Google Scholar
Secord, D. & Muller-Parker, G.. 2005. Symbiont distribution along a light gradient within an intertidal cave. Limnology and Oceanography 50:272–8.CrossRefGoogle Scholar
Sedmera, D., Misek, I. & Klima, M.. 1997. On the development of cetacean extremities. 2. Morphogenesis and histogenesis of the flippers in the spotted dolphin (Stenella attenuata). European Journal of Morphology 35:117–23.CrossRefGoogle Scholar
Semlitsch, R. D. & Wilbur, H. M.. 1989. Artificial selection for paedomorphosis in the salamander Ambystoma talpoideim. Evolution 43:105–12.CrossRefGoogle Scholar
Sendra, A., Ortuno, V. M., Moreno, A., Montagud, S. & Teruel, S.. 2006. Gollumjapyx smeagol gen. n., sp n., an enigmatic hypogean japygid (Diplura: Japygidae) from the eastern Iberian Peninsula. Zootaxa 1372:35–52.Google Scholar
Seryodkin, I. V., Kostyria, A. V., Goodrich, J. M.et al. 2003. Denning ecology of brown bears and Asiatic black bears in the Russian Far East. Ursus 14:153–61.Google Scholar
Sharratt, N. J., Picker, M. D. & Samways, M. J.. 2000. The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. Biodiversity and Conservation 9:107–43.CrossRefGoogle Scholar
Shaw, T. R. 1992. History of Cave Science. The Exploration and Study of Limestone Caves, to 1900. Broadway: Sydney Speleological Society.Google Scholar
Shear, W. 1969. A synopsis of the cave millipedes of the United States, with an illustrated key to genera. Psyche 76:126–43.CrossRefGoogle Scholar
Shear, W. A. 2003. A second species of the rare millipede family Apterouridae (Diplopoda: Chordeumatidae: Striarioidea). Proceedings of the Biological Society of Washington 116:509–14.Google Scholar
Shor, E. N. 1973. Jordan, David Starr, pp. 169–70, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 7. New York: Scribner.Google Scholar
Silfvergrip, A. M. C. 1996. A Systematic Revision of the Neotropical Catfish Genus Rhamdia (Teleostei, Pimelodidae). Stockholm: Swedish Museum of Natural History.Google Scholar
Silliman, B. 1851. On the Mammoth Cave of Kentucky. American Journal of Science, ser. 2, 10:332–9.Google Scholar
Simms, M. J. 1994. Emplacement and preservation of vertebrates in caves and fissures. Zoological Journal of the Linnean Society 112:261–83.CrossRefGoogle Scholar
Simon, K. S., Benfield, E. F. & Macko, S. A.. 2003. Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–406.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. New York: Columbia University Press.Google Scholar
Simpson, G. G. 1949. The Meaning of Evolution. New Haven, CT: Yale University Press.Google Scholar
Sket, B. 1996a. The ecology of anchihaline caves. Trends in Ecology and Evolution 11:221–5.CrossRefGoogle ScholarPubMed
Sket, B. 1996b. Biotic diversity of hypogean habitats in Slovenia and its cultural importance, pp. 59–74, in: Cimerman, A. & Gunde-Cimerman, N. (eds.) Biodiversity. International Biodiversity Seminar ECC XIV Meeting, June 30–July 4, 1995, Godz Martuljek, Slovenia. Ljubijana: National Institute of Chemistry.Google Scholar
Sket, B. 1999. High biodiversity in hypogean waters and its endangerment – the situation in Slovenia, the Dinaric Karst, and Europe. Crustaceana 72:767–79.CrossRefGoogle Scholar
Skey, B. 2004. Anchialine habitats, pp. 64–5, in: Gunn, J. (ed.) Encyclopedia of Caves and Karst Science. New York: Fitzroy Dearborn.Google Scholar
Sloan, P. R. 1975. The Buffon-Linnaeus controversy. Isis 67:356–75.CrossRefGoogle Scholar
Sluys, R. & Benazzi, M., 1992. A new finding of a subterranean dendrocoelid flatworm from Italy (Platyhelminthes, Tricladida, Paludicola). Stygologia 7:213–17.Google Scholar
Smith, D. C. & Brown, Jr H. W.. 2000. Louis Agasiz, the Great Deluge, and early Maine geology. Northeastern Naturalist 7:157–77.CrossRefGoogle Scholar
Smith, P. W. & Welch, N. M.. 1978. A summary of the life history and distribution of the Spring Cavefish, Chologaster agassizi Putnam, with population estimates for the species in southern Illinois. Illinois Natural History Survey, Biological Notes. 1978:104.Google Scholar
Smithers, P. 2005. The diet of the cave spider Meta menardi (Latreille 1804) (Araneae, Tetragnathidae). Journal of Arachnology 33:243–6.CrossRefGoogle Scholar
Sorensen, M. V., Jorgensen, A. & Boesgaard, T. M.. 2000. A new Echinoderes (Kinorhyncha: Cyclorhagida) from a submarine cave in New South Wales, Australia. Cahiers de Biologie Marine 4:167–79.Google Scholar
Sötje, I. & Jarms, G.. 1999. Detailed description of Thecoscyphus zibrowii Werner, 1984 (Scyphozoa, Coronatae) with remarks on the life cycle. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 96:5–13.Google Scholar
Southward, A. J., Kennicutt, M. C., Herrera, J. Alcalaet al. 1996. On the biology of submarine caves with sulphur springs: appraisal of C-13/C-12 ratios as a guide to trophic relations. Journal of the Marine Biological Association of the United Kingdom 76:265–85.CrossRefGoogle Scholar
Spanjer, G. R. & Fenton, M. B.. 2005. Behavioral responses of bats to gates at caves and mines. Wildlife Society Bulletin 33:1101–12.CrossRefGoogle Scholar
Stanton, W. 1971. Dana, James Dwight, pp. 549–54, in: Gilliespie, C. C. (ed.) Dictionary of Scientific Biography, vol. 3. New York: Scribner.Google Scholar
Stearns, S. C. 1983. The evolution of life-history traits in mosquitofish since their introduction to Hawaii in 1905: rates of evolution, heritabilities, and developmental plasticity. American Zoologist 23:65–75.CrossRefGoogle Scholar
Stephens, J. L. 1841. Incidents of Travel in Central America, Chiapas, and Yucatan. New York: Harper & Brothers.CrossRefGoogle Scholar
Stepien, C. A., Morton, B., Dabrowska, K. A.et al. 2001. Genetic diversity and evolutionary relationships of the troglodytic ‘living fossil’ Congeria kusceri (Bivalvia: Dreissenidae). Molecular Ecology 10:1873–9.CrossRefGoogle Scholar
Stock, J. H., Iliffe, T. M. & Williams, D. 1986. The concept “anchialine” reconsidered. Stygologia 2:90–2.Google Scholar
Stoev, P. 2001. A synopsis of the Bulgarian cave centipedes (Chilopoda). Arthropoda Selecta 10:31–54.Google Scholar
Stoev, P. 2004. The first troglomorphic species of the millipede genus Paracortina Wang & Zhang, 1993 from south Yunnan, China (Diplopoda: Callipodida: Paracortinidae). Zootaxa 441:1–8.CrossRefGoogle Scholar
Stoev, P. & Enghoff, H.. 2005. A new cave-dwelling millipede of the genus Bollmania Silvestri, 1896 from Yunnan, China, with remarks on the reduction of the second female leg-pair (Diplopoda: Callipodida: Caspiopetalidae). Journal of Natural History 39:1875–91.CrossRefGoogle Scholar
Stone, A. J. 1995. Images from the Underworld: Naj Tunich and the Tradition of Maya Cave Painting. Austin, TX: University of Texas Press.Google Scholar
Stoner, K. E., Salazar, K. A. O., R.-Fernández, R. C. & Quesada, M.. 2003. Population dynamics, reproduction, and diet of the lesser long-nosed bat (Leptonycteris curasoae) in Jalisco, Mexico: implications for conservation. Biodiversity and Conservation 12:357–73.CrossRefGoogle Scholar
Strecker, U., Bernatchez, L. & Wilkens, H.. 2003. Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Molecular Ecology 12:699–710.CrossRefGoogle Scholar
Strickler, A. G., Yamamoto, Y. & Jeffery, W. R.. 2001. Early and late changes in Pax6 expression accompany eye degeneration during cavefish development. Development, Genes and Evolution 211:138–44.CrossRefGoogle ScholarPubMed
Suarez-Morales, E. & Iliffe, T. M.. 2005. A new Exumella (Crustacea: Copepoda: Ridgewayiidae) from anchialine waters of the western Caribbean, with comments on regional biogeography. Bulletin of Marine Science 77:409–23.Google Scholar
Sustr, V., Elhottova, D., Kristufek, V.et al. 2005. Ecophysiology of the cave isopod Mesoniscus graniger (Frivaldszky, 1865) (Crustacea: Isopoda). European Journal of Soil Biology 41:69–75.CrossRefGoogle Scholar
Swart, C. J. U., Stoch, E. J., Jaarsveld, C. F. & Brink, A. B. A.. 2003. The Lower Wonderfontein Spruit: an exposé. Environmental Geology 43:635–53.Google Scholar
Sweet, S. S. 1977. Natural metamorphosis in Eurycea neotenes, and the generic allocation of the Texas Eurycea (Amphibia: Plethodontidae). Herpetologica 33:364–75.Google Scholar
Sweet, S. S. 1986. Caudata, pp. 734–740, in: Botosaneanu, L. (ed.) Stygofauna Mundi. A Faunistic, Distributional, and Ecological Synthesis of the World Fauna inhabiting Subterranean Waters (including the Marine Interstitial). Leiden: E.J. Brill.Google Scholar
Tabuki, R. & Hanai, T.. 1999. A new sigillid ostracod from submarine caves of the Ryukyu Islands, Japan. Palaeontology 42:569–93.CrossRefGoogle Scholar
Taguchi, I. & Makiya, K.. 1982. House centipede Thereuonema hilgendorfi as a predator of mosquitoes. Medical Entomology and Zoology 33:33–40.CrossRefGoogle Scholar
Talarico, G., Palacios-Vargas, J. G., Silva, M. F. & Alberti, G.. 2006. Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida). Journal of Morphology 267:441–63.CrossRefGoogle Scholar
Tansley, A. G. 1935. The use and abuse of vegetational concepts and terms. Forest Ecology and Management 16:284–307.Google Scholar
Tarburton, M. K. 2003. The breeding biology of the Mountain Swiftlet, Aerodramus hirundinaceus, in Irian Jaya. Emu 103:177–82.CrossRefGoogle Scholar
Tauste, F. 1678. Relación de las Misiones de los Religiosos Capuchinos en la provincia de Cumaná. (Unpublished manuscript.)
Taylor, G. 1970. Bentham, George, pp. 614–15, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 1. New York: Scribner.Google Scholar
Taylor, J. 1964. Noteworthy predation on the guano bat. Journal of Mammalogy 45:300–1.CrossRefGoogle Scholar
Taylor, S. J., Krejca, J. K. & Denight, M. L.. 2005. Foraging range and habitat use of Ceuthophilus secretus (Orthoptera: Rhaphidophoridae), a key trogloxene in central Texas cave communities. American Midland Naturalist 154:97–114.CrossRefGoogle Scholar
Teeling, E. C., Springer, M. S., Madsen, O.et al. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–4.CrossRefGoogle ScholarPubMed
Tellkampf, T. 1844a. Beschreibung einiger neuer in der Mammuth-Höhle in Kentucky aufgefundener Gattungen von Gliederthieren. Archives Vereins Freund Naturliche Mecklenburg 10:318–22.Google Scholar
Tellkampf, T. 1844b. Uber den blinden Fisch der Mammuthhöhle in Kentucky. (Muller's) Archives für Anatomie und Physiologie 1844:381–95.Google Scholar
Tétry, A. 1971a. Caullery, Maurice, pp. 148–9, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 3. New York: Scribner.Google Scholar
Tétry, A. 1971b. Cuénot, Lucien, pp. 492–4, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 3. New York: Scribner.Google Scholar
Thinés, G. 1969. L'Evolution Regressive des Poissons Cavernicoles et Abyssaux. Paris: Masson et Cie.Google Scholar
Thomas, M. L. H., Logan, A., Eakins, K. E. & Mathers, S. M.. 1992. Biotic characteristics of the anchialine ponds of Bermuda. Bulletin of Marine Science 50:133–57.Google Scholar
Thomassen, J. A., Tex, R.J., Bakker, M.A.G. & Povel, G. D. E.. 2005. Phylogenetic relationships amongst swifts and swiftlets: a multi locus approach. Molecular Phylogenetics and Evolution 37:264–77.CrossRefGoogle ScholarPubMed
Thompson, R. S., Devender, T. R., Martin, P. S., Foppe, T. & Long, A.. 1980. Shasta ground sloth (Nothrotheriops shastense Hoffstetter) at Shelter Cave, New Mexico: environment, diet, and extinction. Quaternary Research 14:360–76.CrossRefGoogle Scholar
Thurgate, M. E., Gough, J. S., Spate, A. & Eberhard, S.. 2001a. Subterranean biodiversity in New South Wales: from rags to riches. Records of the Western Australian Museum Supplement 64:37–47.CrossRefGoogle Scholar
Thurgate, M. E., Gough, J. S., Clarke, A. K., Serov, P. & Spate, A.. 2001b. Stygofauna diversity and distribution in Eastern Australian cave and karst areas. Records of the Western Australian Museum Supplement 64:49–62.CrossRefGoogle Scholar
Tindle, R. 1984. The evolution of breeding strategies in the flightless cormorant (Nannopterum harrisi) of the Galapagos. Biological Journal of the Linnean Society 21:157–64.CrossRefGoogle Scholar
Tinsley, R. C. 1990. Host behaviour and opportunism in parasite life cycles. Parasitism and host behaviour, pp. 158–92, in: Barnard, C. J. & Behnke, J. M. (eds.) Parasitism and Host Behaviour. London: Taylor and Francis.Google Scholar
Todaro, M. A., Leasi, F., Bizzarri, K. & Tongiorgi, P.. 2006. Meiofauna densities and gastrotrich community composition in a Mediterranean sea cave. Marine Biology 149:1079–91.CrossRefGoogle Scholar
Todd, J. E. 1901. Some problems of the Dakota artesian system. Science 14:794.Google Scholar
Todrank, J. & Heth, G.. 1996. Indiviual odours in two chromosomal species of blind, subterranean mole rat (Spalax ehrenbergi): conspecific and cross-species discrimination. Ethology 102:806–11.CrossRefGoogle Scholar
Tompkins, D. A. 1999. Impact of nest-harvesting on the reproductive success of black-nest swiftlets (Aerodramus maximus). Wildlife Biology 5:33–6.CrossRefGoogle Scholar
Trajano, E. 1995. Evolution of tropical troglobites: applicability of the model of Quaternary climatic fluctuations. Memoires de Biospeleologie 22:203–9.Google Scholar
Trajano, E. 2000. Cave faunas in the Atlantic tropical rain forest: composition, ecology, and conservation. Biotropica 37:882–93.CrossRefGoogle Scholar
Trajano, E. 2001. Ecology of subterranean fishes: an overview. Environmental Biology of Fishes 62:133–60.CrossRefGoogle Scholar
Trajano, E., Mugue, N., Krejca, J., Vidthayanon, C., Smart, D. & Borowsky, R.. 2002. Habitat, distribution, ecology and behavior of cave balitorids from Thailand (Teleostei: Cypriniformes). Ichthyological Exploration of Freshwaters 13:169–84.Google Scholar
Triplehorn, C. A. & Johnson, N. F.. 2005. Borror and DeLong's Introduction to the Study of Insects. Belmont, CA: Thompson.Google Scholar
Trissino, G. G. 1537. Letter dated 5 March. In: Alberti, L. 1550.
Tunnicliffe, V. 1991. The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology: An Annual Review 29:319–407.Google Scholar
Ubelaker, J. & Dailey, M.. 1969. Trichuroides myoti, a new nematode from the gray bat, Myotis grisescens. American Midland Naturalist 85:284–6.CrossRefGoogle Scholar
Uieda, W. 2000. A review of complete albinism in bats with five new cases from Brazil. Acta Chiropterologica 2:97–105.Google Scholar
,United States Department of Agriculture. 2002. Water quality and aquatic biological assessment of Hunter's and Devil's Icebox caves. Agricultural Research Service, United States Department of Agriculture. Accessed 11 April 2006. Https://fsb.missouri.edu/ARS/LerchB/Cave_PO.htm.
Unwin, R. W. 1995. A provincial man of science at work: Martin Lister, F.R.S., and his illustrators 1670–1683. Notes and Records of the Royal Society of London 49:209–30.CrossRefGoogle Scholar
Uriz, M. J., Rosell, D. & Martin, D.. 1992. The sponge population of the Cabrera Archipelago (Balearic Islands) – characteristics, distribution, and abundance of the most representative species. Marine Ecology – Pubblicazioni della Stazione Zoologica di Napoli I 13:101–17.CrossRefGoogle Scholar
Uschmann, G. 1972. Haeckel, Ernst Heirich Philipp August, pp. 6–11, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 6. New York: Scribner.Google Scholar
Vacelet, J., Bouryesnault, N. & Harmelin, J. G.. 1994. Hexactinellid cave, a unique deep-sea habitat in the scuba zone. Deep-Sea Research Part I – Oceanographic Research Papers 41:965–73.CrossRefGoogle Scholar
Vacelet, J. & Duport, E.. 2004. Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae). Zoomorphology 123:179–90.CrossRefGoogle Scholar
Valvasor, J. W. 1687. An extract of a letter written to the Royal Society out of Craniola, being a full and accurate description of the wonderful Lake of Kirknitz in that country. Philosophical Transactions of the Royal Society of London 16:411–27.Google Scholar
Valvasor, J. W. 1689. Die Ehre des Herzogthums Krain. Ljubljana, Slovenia: Endter.Google Scholar
Beynen, P. & Townsend, K.. 2005. A disturbance index for karst environments. Environmental Management 36:101–16.CrossRefGoogle ScholarPubMed
Vandel, A. 1964. Biospéologie: la Biologie des Animaux Cavernicoles. Paris: Gauthier-Villars.Google Scholar
Vandel, A. 1965. Biospeleology. The Biology of Cavernicolous Animals. Oxford: Pergamon Press.Google Scholar
Dyck, S. 1982. Antechinus puteus (Marsupialia: Dasyuridae), a new fossil species from the Texas caves, Southeastern Queensland. Australian Mammology 5:59–68.Google Scholar
Verovnik, R., Sket, B., Prevorcnik, S. & Trontelj, P.. 2003. Random amplified polymorphic DNA diversity among surface and subterranean populations of Asellus aquaticus (Crustacea: Isopoda). Genetica 119:155–65.CrossRefGoogle Scholar
Vidlicka, L., Vrsansky, P. & Shcherbakov, D. E.. 2003. Two new troglobitic cockroach species of the genus Spelaeoblatta (Blattaria: Nocticolidae) from North Thailand. Journal of Natural History 37:107–14.CrossRefGoogle Scholar
Vigne, J. D. & Valladas, H.. 1996. Small mammal fossil assemblages as indicators of environmental change in northern Corsica during the last 2500 years. Journal of Archaeological Science 23:199–215.CrossRefGoogle Scholar
Villoria Moreno, S. 1996. New genus and species of the deep-sea family Coronarctidae (Tardigrada) from a submarine cave with a deep-sea like condition. Sarsia 81:275–83.Google Scholar
Vinogradova, O., Kovalenko, O. V., Wasser, S. P., Nevo, E. & Weinstein-Evron, M.. 1998. Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. Israel Journal of Plant Sciences 46:229–38.CrossRefGoogle Scholar
Viré, A. 1899. Essai sur la faune obscuricole de France, étude particulière de quelques formes zoologiques. Thesis. Paris.Google Scholar
Viré, A. 1904. La biospéologie. Comptes Rendus de l'Académie des Sciences du Paris 139.Google Scholar
Voisin, J. F., Quang, Y. V. & Quang, P. Nguyen. 2005. The diet of the white nest swiftlet (Aerodramus fusciphagus germani) in Vietnam. Aves 42:142–8.Google Scholar
Sternberg, R. & Schotte, M.. 2004. A new anchialine shrimp of the genus Procaris (Crustacea: Decapoda: Procarididae) from the Yucatan Peninsula. Proceedings of the Biological Society of Washington 117:514–22.Google Scholar
Voss, S. R. & Shaffer, H. B.. 1997. Adaptive evolution via a major gene effect: paedomorphosis in the Mexican axolotl. Proceedings of the National Academy of Sciences of the United States of America 94:14185–9.CrossRefGoogle Scholar
Voss, S. R. & Shaffer, H. B.. 2000. Evolutionary genetics of metamorphic failure using wild-caught vs. laboratory axolotls (Ambystoma mexicanum). Molecular Ecology 9:1401–7.CrossRefGoogle Scholar
Waddell, D. R. & Duffy, K. T. I.. 1986. Breakdown of self/nonself recognition in cannibalistic strains of the predatory slime mold, Dictyostelium caveatum. Journal of Cell Biology 102:298–305.CrossRefGoogle ScholarPubMed
Wagner, G. P. 2001a. The Character Concept in Evolutionary Biology. San Diego, CA: Academic Press.Google Scholar
Wagner, G. P. 2001b. Characters, units and natural kinds: an introduction, pp. 1–10, in: Wagner, G. P., The Character Concept in Evolutionary Biology. San Diego, CA: Academic Press.Google Scholar
Wallace, D. R. 1999. The Bonehunters' Revenge. Dinosaurs, Greed, and the Greatest Scientific Feud of the Gilded Age. Boston, MA: Houghton Mifflin Company.Google Scholar
Wallich, N. 1851. Specimen Faunœ Subterraneœ: being a Contribution towards the Subterranean Fauna. London.Google Scholar
Wang, S. J., Li, R. L., Sun, C. X.et al. 2004a. How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: phenomena and mechanisms. Land Degradation and Development 15:123–31.CrossRefGoogle Scholar
Wang, S. J., Liu, Q. M. & Zhang, D. F.. 2004b. Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degradation and Development 15:115–21.CrossRefGoogle Scholar
Wang, Y., Cheng, H., Edwards, R. L.et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–3.CrossRefGoogle ScholarPubMed
Warren, L. 2004. Constantine Samuel Rafinesque. A Voice in the American Wilderness. Lexington, KY: The University Press of Kentucky.Google Scholar
Watson, J., Hamilton-Smith, E., Gillieson, D. & Kiernan, K.. 1997. Guidelines for Cave and Karst conservation. Cambridge, UK: IUCN.Google Scholar
Watson, P. J. 1974. Archaeology of the Mammoth Cave Area. New York: Academic Press.Google Scholar
Wcislo, W. T. 1989. Behavioral environment and evolutionary change. Annual Review of Ecology and Systematics 20:137–69.CrossRefGoogle Scholar
Weber, A. 2000. Fish and amphibian, pp. 109–32, in: Wilkens, H., Culver, D. C. & Humphreys, W. F. (eds.) Subterranean Ecosystems. Amsterdam: Elsevier.Google Scholar
Welbourn, W. 1999. Invertebrate cave fauna of Kartchner Caverns, Arizona. Journal of Cave and Karst Studies 61:93–101.Google Scholar
Went, F. W. 1969. Fungi associated with stalactite growth. Science 166:385–6.CrossRefGoogle ScholarPubMed
Werdelin, L. N. & Asa Fortelius, M.. 1999. Testicondy and ecological opportunism predict the rapid evolution of elephants. Evolutionary Theory 12:39–45.Google Scholar
West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics 20:249–78.CrossRefGoogle Scholar
Weyandt, S. E., Bussche, R. A., Hamilton, M. J. & Leslie, D. M.. 2005. Unraveling the effects of sex and dispersal: Ozark big-eared bat (Corynorhinus townsendii ingens) conservation genetics. Journal of Mammalogy 86:1136–43.CrossRefGoogle Scholar
Weygoldt, P. 1994. Amblypygi, pp. 241–7, in: Juberthie, C. & Decu, V. (eds.) Encyclopaedia Biospéologica, vol. 1. Moulis and Bucarest: Société de Biospéologie.Google Scholar
White, L. A. 1959. The Evolution of Culture; the Development of Civilization to the Fall of Rome. New York: McGraw-Hill.Google Scholar
White, R. E. 1983. A Field Guide to the Beetles. Boston, MA: Houghton Mifflin. www.zin.ru/animalia/coleoptera/eng/koval3.htm, accessed April 2005.Google Scholar
Whiteman, H. H. 1994. Evolution of facultative paedomorphosis in salamanders. Quarterly Review of Biology 69:205–21.CrossRefGoogle Scholar
Wiens, J. J., Chippindale, P. T. & Hillis, D. M.. 2003. When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. Systematic Biology 52:501–14.CrossRefGoogle ScholarPubMed
Wilkens, H. 1969. Beitrage zur Degeneration des Auges bei Cavernicolen, Genzahl und Manifestationsart. Zoologisches Anzeiger 180:454–64.Google Scholar
Wilkens, H. 1979. Reduktionsgrad und phylogenetisches Alter: ein Beitrag Besiedlungsgeschichte der Limnofauna Yukatans. Zeitschrift für Zoologische Systematik und Evolutionsforschung 17:262–72.CrossRefGoogle Scholar
Wilkens, H., Culver, D. C. & Humphreys, W. F. (eds.). 2000. Subterranean Ecosystems. Amsterdam: Elsevier.
Wilkinson, G. S. & South, J. M.. 2002. Life history, ecology and longevity in bats. Aging Cell 1:124–31.CrossRefGoogle ScholarPubMed
Willemart, R. H. & Gnaspini, P.. 2004a. Breeding biology of the cavernicolous harvestman Goniosoma albiscriptum (Arachnida, Opiliones, Laniatores): sites of oviposition, egg batches, characteristics and subsocial behavior. Invertebrate Reproduction and Development 45:15–28.CrossRefGoogle Scholar
Willemart, R. H. & Gnaspini, P.. 2004b. Spatial distribution, mobility, gregariousness, and defensive behavior in a Brazilian cave harvestman Goniosoma albiscriptum (Arachnida, Opiliones, Gonyleptidae). Animal Biology 54:221–35.CrossRefGoogle Scholar
Willems, L., Comer, P., Hatert, F.et al. 2002. Karst in granitic rocks, South Cameroon: cave genesis and silica and taranakite speleothems. Terra Nova 14:355–62.CrossRefGoogle Scholar
Williams, J. D. & Howell, W. M.. 1979. An albino sculpin from a cave in the New River drainage of west Virginia (Pisces: Cottidae). Brimleyana 1:141–6.Google Scholar
Wilson, L. G. 1973. Lyell, Charles, pp. 563–77, in: Gillispie, C. C. (ed.) Dictionary of Scientific Biography, vol. 8. New York: Scribner.Google Scholar
Wilson, W. L. 1994. Morphometry and hydrology of Dean's Blue Hole, Long Island. Bahamas Journal of Science 2:10–14.Google Scholar
Winkler, W. G. & Adams, D. B.. 1972. Utilization of southwestern bat caves by terrestrial carnivores. American Midland Naturalist 87:191–200.CrossRefGoogle Scholar
Wittmann, K. J. 2001. Centennial changes in the near-shore mysid fauna of the Gulf of Naples (Mediterranean Sea), with description of Heteromysis riedli sp. n. (Crustacea, Mysidacea). Marine Ecology – Pubblicazioni della Stazione Zoologica di Napoli 22:85–109.CrossRefGoogle Scholar
Wittmann, K. J. 2004. Retromysis nura new genus and species (Mysidacea, Mysidae, Heteromysini) from a superficial marine cave in Minorca (Balearic Islands, Mediterranean Sea). Crustaceana 77:769–83.CrossRefGoogle Scholar
Wood, P. J., Gunn, J. & Perkins, J. J.. 2002. The impact of pollution on aquatic invertebrates within a subterranean ecosystem – out of sight out of mind. Archiv für Hydrobiologie 155:223–37.CrossRefGoogle Scholar
Woods, L. P. & Inger, R. F.. 1957. The cave, spring, and swamp fishes of the Family Amblyopsidae of Central and Eastern United States. American Midland Naturalist 58:232–56.CrossRefGoogle Scholar
Worheide, G. 1998. The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific – micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. FACIES 38:1–88.CrossRefGoogle Scholar
Worsaae, K., Sterrer, W. & Iliffe, T. M.. 2004. Longipalpa saltatrix, a new genus and species of the meiofaunal family Nerillidae (Annelida: Polychaeta) from an anchihaline cave in Bermuda. Proceedings of the Biological Society of Washington 117:346–62.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97–159.Google ScholarPubMed
Wyman, J. 1843. Description of a ‘Blind Fish,’ from a cave in Kentucky. American Journal of Science 45:94–6.Google Scholar
Wyman, J. 1851. [Account of dissections of the blind fishes (Amblyopsis spelaeus) from the Mammoth Cave, Kentucky.]Proceedings of the Boston Society of Natural History 3:349, 375.Google Scholar
Wyman, J. 1854a. The eyes and organs of hearing in Amblyopsis spelaeus. Proceedings of the Boston Society of Natural History 4:149–51.Google Scholar
Wyman, J. 1854b. On the eye and the organ of hearing in the blind fishes (Amblyopsis spelaeus DeKay) of the Mammoth Cave. Proceedings of the Boston Society of Natural History 4:395–6.Google Scholar
Wyman, J. 1872. Notes and drawings of the rudimentary eye, brain, and tactile organs of Amblyopsis spelaeus. American Naturalist 6:16–20.Google Scholar
Xie, Y. J. 1540. Report on the Alu Cave. Manuscript. (In Chinese.)
Yager, J. 1994. Speleonectes gironensis, new species (Remipedia, Speleonectidae), from anchialine caves in Cuba, with remarks on biogeography and ecology. Journal of Crustacean Biology 14:752–62.CrossRefGoogle Scholar
Yamamoto, Y. & Jeffery, W.. 2000. Central role for the lens in cave fish eye degeneration. Science 289:631–3.CrossRefGoogle ScholarPubMed
Yeo, D. C. J. 2001. A new cavernicolous species of freshwater crab (Crustacea: Brachyura: Potamidae) from Pulau Tioman, peninsular Malaysia. Proceedings of the Biological Society of Washington 114:618–23.Google Scholar
Yeo, D. C. J. & Ng, P. K. L.. 1999. Erebusa calobates, new genus, new species, a troglobitic crab (Brachyura: Potamidae) from Laos. Journal of Crustacean Biology 19:908–16.CrossRefGoogle Scholar
Yildirimhan, H., Bursey, C. & Goldberg, S.. 2005. Helminth parasites of the Caucasian salamander, Mertensiella caucasia, from Turkey. Comparative Parasitology 72:75–87.CrossRefGoogle Scholar
Zacharda, M. 2000. New species of the genus Trogloches (Acari: Prostigmata: Rhagidiidae) from Oetztal Alps, Tyrol, with a key to the adult species of the genus. Journal of Natural History 34:463–78.CrossRefGoogle Scholar
Zapparoli, M. 1984. Notes on cave dwelling Lithobiomorpha from Maghreb, North Africa: Chilopoda. Fragmenta Entomologica 17:181–94.Google Scholar
Zhang, C. 1986. On the ecological adaptation and geographical distribution of the barbine fish Varicorhinus (Scaphestes) macrolepis. Acta Zoologica Sinica 32:266–72.Google Scholar
Zhang, C. G. & Zhao, Y. H.. 2001. A new fish of Sinocyclocheilus from Guangxi, China with a comment on its some biological adaptation [sic]. Acta Zootaxonomica Sinica 26:102–7.Google Scholar
Zheng, Z.-G. 1839. [Author to supply details; reference cited in Table 1.1.]

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Aldemaro Romero, Southern Illinois University Edwardsville
  • Book: Cave Biology
  • Online publication: 21 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511596841.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Aldemaro Romero, Southern Illinois University Edwardsville
  • Book: Cave Biology
  • Online publication: 21 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511596841.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Aldemaro Romero, Southern Illinois University Edwardsville
  • Book: Cave Biology
  • Online publication: 21 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511596841.009
Available formats
×