Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T22:50:19.668Z Has data issue: false hasContentIssue false

8 - Hydrodynamic reinforcement of elastomers

Published online by Cambridge University Press:  06 January 2010

T. A. Vilgis
Affiliation:
Max-Planck Institut für Polymerforschung, Mainz
G. Heinrich
Affiliation:
Technische Universität, Dresden
M. Klüppel
Affiliation:
Deutsches Institut für Kautschuktechnologie e.V.
Get access

Summary

Reminder: Einstein–Smallwood

In the following sections we are going to study the reinforcement obtained by adding particles to the elastic matrix. The mechanisms of the effective enhancement of the elastic modulus cannot be explained by one simple theory, since several interactions and many different length scales are involved [179]. This is because there are different physical levels of reinforcement. The rubber matrix contributes through its rubber elasticity [7], whereas the filler particles contribute in different ways. The most well known of these are volume effects, also called hydrodynamics interactions (due to the analogy with the enhancement of the viscosity of liquids by the addition of particles).

In the context of carbon-black-filled elastomers, the contribution to reinforcement on small scales can be attributed to the complex structure of the branched filler aggregates as well as to a strong surface–polymer interaction, leading to the socalled bound rubber. Thus the filler particles are coated with polymer chains and the binding (physical or chemical) of elastomer chains to the surface of the filler particles changes the elastic properties of the macroscopic material significantly [2]. On larger scales the hydrodynamic aspect of the reinforcement dominates the physical picture. Hydrodynamic reinforcement of elastic systems plays a major role not only in carbon-black-filled elastomers, but also in composite systems with hard and soft inclusions. Finally, at macroscopic length scales filler networking at medium and high filler volume fractions plays a dominant role [179].

In this chapter we are going to concentrate – on a general basis – on the different mechanisms of elastomer reinforcement in the hydrodynamic regime. To do so, we present two different regimes of reinforcement mechanisms.

Type
Chapter
Information
Reinforcement of Polymer Nano-Composites
Theory, Experiments and Applications
, pp. 101 - 117
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×