Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-27T18:37:32.452Z Has data issue: false hasContentIssue false

6 - Systems with Spherical Symmetry

Published online by Cambridge University Press:  05 August 2012

Sidney Redner
Affiliation:
Boston University
Get access

Summary

Introduction

This chapter is devoted to first-passage properties in spherically symmetric systems. We shall see how the contrast between persistence, for spatial dimension d ≤ 2, and transience, for d > 2, leads to very different first-passage characteristics. We will solve first-passage properties both by the direct time-dependent solution of the diffusion equation and by the much simpler and more elegant electrostatic analogy of Section 1.6.

The case of two dimensions is particularly interesting, as the inclusion of a radial potential drift ν(r) ∝ 1/r is effectively the same as changing the spatial dimension. Thus general first-passage properties for isotropic diffusion in d dimensions are closely related to those of diffusion in two dimensions with a superimposed radial potential bias. This leads to nonuniversal behavior for the two-dimensional system.

As an important application of our study of first-passage to an isolated sphere, we will obtain the classic Smoluchowski expression for the chemical reaction rate, a result that underlies much of chemical kinetics. Because of the importance of this result, we will derive it by time-dependent approaches as well as by the quasi-static approximation introduced in Section 3.6. The latter approach also provides an easy way to understand detailed properties of the spatial distribution of reactants around a spherical trap.

First Passage between Concentric Spheres

We begin by computing the splitting (or exit) probabilities and the corresponding mean hitting times to the inner and outer the boundaries of the annular region RrR+ as functions of the starting radius r (Fig. 6.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×