Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T04:53:28.449Z Has data issue: false hasContentIssue false

24 - EPR paradox and Bell inequalities

Published online by Cambridge University Press:  10 December 2009

Robert B. Griffiths
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

Bohm version of the EPR paradox

Einstein, Podolsky, and Rosen (EPR) were concerned with the following issue. Given two spatially separated quantum systems A and B and an appropriate initial entangled state, a measurement of a property on system A can be an indirect measurement of B in the sense that from the outcome of the A measurement one can infer with probability 1 a property of B, because the two systems are correlated. There are cases in which either of two properties of B represented by noncommuting projectors can be measured indirectly in this manner, and EPR argued that this implied that system B could possess two incompatible properties at the same time, contrary to the principles of quantum theory.

In order to understand this argument, it is best to apply it to a specific model system, and we shall do so using Bohm's formulation of the EPR paradox in which the systems A and B are two spin-half particles a and b in two different regions of space, with their spin degrees of freedom initially in a spin singlet state (23.2). As an aid to later discussion, we write the argument in the form of a set of numbered assertions leading to a paradox: a result which seems plausible, but contradicts the basic principles of quantum theory. The assertions E1–E4 are not intended to be exact counterparts of statements in the original EPR paper, even when the latter are translated into the language of spin-half particles. However, the general idea is very similar, and the basic conundrum is the same.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×