Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T17:17:38.309Z Has data issue: false hasContentIssue false

18 - Unstructured Grid Generation

Published online by Cambridge University Press:  15 January 2010

T. J. Chung
Affiliation:
University of Alabama, Huntsville
Get access

Summary

The structured grid generation presented in Chapter 17 is restricted to those cases where the physical domain can be transformed into a computational domain through one-to-one mapping. For irregular geometries, however, such mapping processes may become either inconvenient or impossible to apply. In these cases, the structured grid generation methods are abandoned and we turn to unstructured grids where transformation into the computational domain from the physical domain is not required. Even for the regular geometries, an unstructured grid generation may be preferred for the purpose of adaptive meshing in which the structured grids initially constructed become unstructured as adaptive refinements are carried out.

Finite volume and finite element methods can be applied to unstructured grids. This is because the governing equations in these methods are written in integral form and numerical integration can be carried out directly on the unstructured grid domain in which no coordinate transformation is required. This is contrary to the finite difference methods in which structured grids must be used.

There are two major unstructured grid generation methods: Delaunay-Voronoi methods (DVM) and advancing front methods (AFM) for triangles (2-D) and tetrahedrals (3-D). Numerous other methods for quadrilaterals (2-D) and hexahedrals (3-D) are available (tree methods, paving methods, etc.). We shall discuss these and other topics in this chapter.

DELAUNAY-VORONOI METHODS

A two-dimensional domain may be triangulated as shown in Figure 18.1.1a (light lines). Each side line of the triangles can be bisected in a perpendicular direction such that these three bisectors join a point within the triangle (heavy lines in Figure 18.1.1a), forming a polygon surrounding the vertex of each triangle, known as the Voronoi polygon (diagram) [Voronoi, 1908].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Unstructured Grid Generation
  • T. J. Chung, University of Alabama, Huntsville
  • Book: Computational Fluid Dynamics
  • Online publication: 15 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606205.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Unstructured Grid Generation
  • T. J. Chung, University of Alabama, Huntsville
  • Book: Computational Fluid Dynamics
  • Online publication: 15 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606205.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Unstructured Grid Generation
  • T. J. Chung, University of Alabama, Huntsville
  • Book: Computational Fluid Dynamics
  • Online publication: 15 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606205.023
Available formats
×