Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T07:19:24.766Z Has data issue: false hasContentIssue false

5 - Preparation and Construction of a Geochemical Model

Published online by Cambridge University Press:  27 March 2010

Chen Zhu
Affiliation:
University of Pittsburgh
Greg Anderson
Affiliation:
University of Toronto
Get access

Summary

Introduction

To set up a geochemical model, we need:

  • specific information describing the geological system of interest;

  • conceptualization of what chemical reactions are occurring and what chemical reactions are important to the questions we seek to answer;

  • thermodynamic, kinetic, and surface properties for the specific chemical system.

Establish the Goals

The goals of geochemical modeling will determine what type of models to develop and how detailed they need to be. They also determine what samples to collect and what parameters to measure. The purposes can range from establishing the baseline geochemistry or background concentrations, predicting contaminant fate and transport, and evaluating remedial alternatives. Usually, no matter what the ultimate goals are, there is a need to use geochemical modeling to characterize the dominant water-rock interactions at a site.

Learn the Groundwater Flow System

Some basic knowledge of the directions and rates of groundwater flow at a site is important for deciding the sample collection and model conceptualization. The direction of groundwater flow determines the sequence in which the water will contact different mineral assemblages in the aquifers. Knowledge of the flow path ensures that observed chemical variation results from a evolutionary path, and this variation can be used in our conceptualization of chemical reactions in an aquifer. For example, knowledge of the flow paths is essential for the application of inverse mass balance modeling (see Chapter 9). The rate of groundwater flow determines, for example, whether or not the local equilibrium assumption can be applied.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×