Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T07:42:04.403Z Has data issue: false hasContentIssue false

12 - Modelling Language-Physiology Coevolution

Published online by Cambridge University Press:  24 November 2009

Chris Knight
Affiliation:
University of East London
Michael Studdert-Kennedy
Affiliation:
Haskins Laboratories
James Hurford
Affiliation:
University of Edinburgh
Get access

Summary

Introduction

A feature of current computational models of language evolution is that the individuals in later populations are not structurally, ‘physiologically’, different from those in the first. Evolution may be working on the language itself, as learned by agents which do not evolve, or on an innate communication scheme. A number of models specifically demonstrate self-organisation of communication schemes and grammars in populations that are already capable of language.

Such models do not show communities evolving from those capable of some simple protolanguage towards those capable of some fuller language. In contrast, in human evolution, vocalisations and speech provided a selective advantage that led to the exaptation and adaptation of aspects of human physiology to support improved language capacity (Deacon 1992; Lieberman 1992). This led to a process of language-physiology coevolution. From the coevolution of physiology and language, hominids developed differences from other primates, such as increased brain size and a supralaryngeal vocal tract.

The coevolution of speech and physiology in humans was also not without cost. The larger brain costs more energy to maintain, and requires a longer infancy for brain growth to be completed. The dropped epiglottis allows greater clarity and distinctiveness in speech, but increases risk of choking.

While some vocalisations are evolved responses – crying, laughter and so on – speech is learned afresh by every individual. Learning allows quicker adaptation to changes in the environment and faster solutions to environmental problems.

Type
Chapter
Information
The Evolutionary Emergence of Language
Social Function and the Origins of Linguistic Form
, pp. 199 - 216
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×