Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T00:31:26.100Z Has data issue: false hasContentIssue false

11 - Allomones II: plant chemical defenses against herbivores

Published online by Cambridge University Press:  23 November 2009

Dietland Muller-Schwarze
Affiliation:
State University of New York
Get access

Summary

The plant world is not colored green; it is colored morphine, caffeine, tannin, phenol, terpene, canavanine, latex, phytohaem–agglutinin, oxalic acid, saponin, l-dopa, etc.

janzen (1978)

Herbivores select certain plant species or parts and reject others. Plant defenses determine food choices as much as nutritional value does. Plants can defend themselves mechanically as with thorns, hairs, waxes, or structural fibers, and chemically with secondary plant compounds. Mammals have had to cope with plant defenses since they adapted to an herbivorous lifestyle approximately 85–100 millions years ago (Archibald, 1996).

In 1888, Stahl suggested that plants use toxic chemicals as defense against herbivores based on his feeding experiment with snails. Fraenkel (1959) postulated that “secondary compounds in plants exist solely for the purpose of repelling and attracting insects.” We now know that these compounds are aimed at vertebrates, other invertebrates, and microbes as well, and in many cases their roles are still being debated. Here I apply the term “allomone” in its widest sense: compounds that benefit the “sender,” even though many are not “signals” in the strict sense. Therefore, “donor” or “originator” organism is a better term. In the metabolism of the herbivore, the receiving organism, such foreign compounds are termed xenobiotics, whether natural or synthetic.

The interactions of plants and vertebrate herbivores can be broken down into several questions.

  • What defense compounds do plants use?

  • What are their effects on mammalian and avian herbivores?

  • What defense strategies do plants use? This includes species differences based on ecological needs; variations of plant defenses between plant parts (leaf, bud, internode, terminal shoot, bark, root) or growth stages that correlate with vulnerability; and seasonal variation of plant defenses.

  • […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×