Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T07:23:31.275Z Has data issue: false hasContentIssue false

8 - Incompleteness

Published online by Cambridge University Press:  23 November 2009

Get access

Summary

Having developed the necessary information-theoretic formalism in Chapter 6, and having studied the notion of a random real in Chapter 7, we can now begin to derive incompleteness theorems.

The setup is as follows. The axioms of a formal theory are considered to be encoded as a single finite bit string, the rules of inference are considered to be an algorithm for enumerating the theorems given the axioms, and in general we shall fix the rules of inference and vary the axioms. More formally, the rules of inference F may be considered to be an r.e. set of propositions of the form

“Axioms | –F Theorem”.

The r.e. set of theorems deduced from the axiom A is determined by selecting from the set F the theorems in those propositions which have the axiom A as an antecedent. In general we'll consider the rules of inference F to be fixed and study what happens as we vary the axioms A. By an n-bit theory we shall mean the set of theorems deduced from an n-bit axiom.

Incompleteness Theorems for Lower Bounds on Information Content

Let's start by rederiving within our current formalism an old and very basic result, which states that even though most strings are random, one can never prove that a specific string has this property.

As we saw when we studied randomness, if one produces a bit string s by tossing a coin n times, 99.9% of the time it will be the case that H(s) ≈ n + H(n). In fact, if one lets n go to infinity, with probability one H(s) > n for all but finitely many n (Theorem R5).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Incompleteness
  • Gregory. J. Chaitin
  • Book: Algorithmic Information Theory
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511608858.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Incompleteness
  • Gregory. J. Chaitin
  • Book: Algorithmic Information Theory
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511608858.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Incompleteness
  • Gregory. J. Chaitin
  • Book: Algorithmic Information Theory
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511608858.012
Available formats
×