Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-25T11:35:09.818Z Has data issue: false hasContentIssue false

9 - Stress and deformation

Published online by Cambridge University Press:  24 November 2009

Roger LeB. Hooke
Affiliation:
University of Maine, Orono
Get access

Summary

In this chapter we will derive general equations for calculating the force per unit area, or traction, on a plane that is not parallel to the coordinate axes, and then use these equations to determine the orientation of the plane on which tractions are a maximum. We will see how this leads to the concept of the invariant of a tensor, and show that this provides the fundamental basis for Glen's flow law. Then we derive the stress equilibrium equations.

In the second half of the chapter we derive expressions for strain rates in terms of velocity derivatives, and develop some relations based on these expressions and some other basic equations. This will set the stage for calculating stresses and velocities in a very simple ice sheet, consisting of a slab of ice of uniform thickness on a uniform slope (Chapter 10) and for investigating some more realistic problems (Chapter 12).

Stress

Although we have been referring to stresses and strain rates throughout the last few chapters, we will now enter into a much more detailed discussion, involving the tensor properties of these quantities. The reader may find it helpful, therefore, to review the section on stresses and strain rates in Chapter 2.

General equations for transformation of stress in two dimensions

Consider a domain in a slab of material of unit thickness (measured normal to the page) as shown in Figure 9.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Stress and deformation
  • Roger LeB. Hooke, University of Maine, Orono
  • Book: Principles of Glacier Mechanics
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614231.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Stress and deformation
  • Roger LeB. Hooke, University of Maine, Orono
  • Book: Principles of Glacier Mechanics
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614231.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Stress and deformation
  • Roger LeB. Hooke, University of Maine, Orono
  • Book: Principles of Glacier Mechanics
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614231.013
Available formats
×