Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-30T06:21:52.438Z Has data issue: false hasContentIssue false

3 - Basics of the classical description of light

Published online by Cambridge University Press:  25 January 2010

Harry Paul
Affiliation:
Humboldt-Universität zu Berlin
Igor Jex
Affiliation:
FNSPE Czech Technical University of Prague
Get access

Summary

The electromagnetic field and its energy

The conclusion by Maxwell, based on theoretical considerations, that light is, by its character, an electromagnetic process, is surely a milestone in the history of optics. By formulating the equations bearing his name, Maxwell laid the foundations for the apparently precise description of all optical phenomena. The classical picture of light is characterized by the concept of the electromagnetic field. At each point of space, characterized by a vector r, and for each time instant t, we have to imagine vectors describing both the electric and the magnetic field. The time evolution of the field distribution is described by coupled linear partial differential equations: the Maxwell equations.

The electric field strength has a direct physical meaning: if an electrically charged body is placed into the field, it will experience a force given by the product of its charge Q and the electric field strength E. (To eliminate a possible distortion of the measured value by the field generated by the probe body itself, its charge should be chosen to be sufficiently small.) Analogously, the magnetic field strength H, more precisely the magnetic induction B = μH (where μ is the permeability), describes the mechanical force acting on a magnetic pole (which is thought of as isolated). Also, the field has an energy content, or, more correctly (because in a precise field theory we can think only about energy being distributed continuously in space), a spatial energy density.

Type
Chapter
Information
Introduction to Quantum Optics
From Light Quanta to Quantum Teleportation
, pp. 17 - 28
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×