Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-31T16:15:46.235Z Has data issue: false hasContentIssue false

6 - Models of the coastal ocean

Published online by Cambridge University Press:  19 February 2010

Robert N. Miller
Affiliation:
Oregon State University
Get access

Summary

Introduction

In recent years interest in the coastal ocean has increased throughout the world scientific community. Knowledge of the coastal oceans is directly relevant to issues of resource management and security, among others, and is therefore of broad societal interest, since a large proportion of the world's population lives near coastlines. In a purely scientific context, new instruments such as surface velocity mapping radars have been developed, and advances in computers and computing techniques have made detailed models of the coastal ocean practical.

The essential physical mechanisms that determine the most interesting aspects of coastal flow differ from season to season and from location to location. Coastal flows are affected by tides. Nonlinear effects can include rectification, so periodic tidal forcing of the coastal ocean can lead to significant residual steady flows. Interaction of the barotropic tide with topography can result in significant baroclinic motion. Interaction with motions on longer timescales can be nontrivial, and simply averaging over tidal periods or implementing other strategies for filtering out the relatively high frequency tidal motions may not be sufficient to deal with tidal interactions. River outflow, with its associated buoyancy fluxes, can be important.

Coastal upwelling, with its ecological implications, is an important feature of coastal circulation in many areas, as are the coastal jet and the ubiquitous coastally trapped waves, which propagate with the coast on their right as you face in the direction of propagation in the northern hemisphere (see Exercises 6.2 and 6.3).

Surface and bottom boundary layers are of the order of tens of meters thick, and often contain many of the phenomena of interest, beyond simple vertical transfer of momentum and heat.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×