Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T20:37:09.466Z Has data issue: false hasContentIssue false

Chapter IV - The Conjugate Gradient Method

Published online by Cambridge University Press:  01 March 2010

Dietrich Braess
Affiliation:
Ruhr-Universität, Bochum, Germany
Get access

Summary

The discretization of boundary-value problems leads to very large systems of equations which often involve several thousand unknowns. The systems are particularly large for three-dimensional problems and for problems of higher order. Often the bandwidth of the matrices is so large that the classical Gauss elimination algorithm and its modern variants are not efficient methods. This suggests that even for linear problems, we should use iterative methods.

Iterative methods first became popular at the end of the fifties, primarily as a means for solving large problems using computers with a small memory. The methods developed then are no longer competitive, but they still provide useful ingredients for modern iterative methods, and so we review them in §1. The bulk of this chapter is devoted to the conjugate gradient method which is particularly useful for the solution of variational problems and saddle point problems. Since the CG methods discussed here can be applied to a broad spectrum of problems, they are competitive with the still faster multigrid methods to be discussed later (whose implementation is generally more complicated and requires more individual programming).

We begin by classifying problems according to the number n of unknowns:

  1. Small problems: For linear problems we can use a direct method. For nonlinear problems (e.g., using the Newton method), all elements of the Jacobi matrices should be computed (at least approximately).

  2. Midsized problems: If the matrices are sparse, we should make use of this fact. For nonlinear problems (e.g., for quasi-Newton methods), the Jacobi matrices should be approximated. Iterative methods can still be used even when the number of steps in the iteration exceeds n.

  3. […]

Type
Chapter
Information
Finite Elements
Theory, Fast Solvers, and Applications in Solid Mechanics
, pp. 186 - 224
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×