Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-6rp8b Total loading time: 0 Render date: 2024-09-02T11:24:06.229Z Has data issue: false hasContentIssue false

11 - Resilient packet ring

from Part III - Optical metropolitan area networks

Published online by Cambridge University Press:  10 May 2010

Martin Maier
Affiliation:
Université du Québec, Montréal
Get access

Summary

The IEEE standard 802.17 Resilient Packet Ring (RPR) aims at combining SONET/SDH's carrier-class functionalities of high availability, reliability, and profitable TDM service (voice) support with Ethernet's high bandwidth utilization, low equipment cost, and simplicity (Davik et al., 2004; Yuan et al., 2004; Spadaro et al., 2004). RPR is a ring-based architecture consisting of two counter directional optical fiber rings with up to 255 nodes. Similar to SONET/SDH, RPR is able to provide fast recovery from a single link or node failure within 50 ms, and carry legacy TDM traffic with a high level of quality of service (QoS). Similar to Ethernet, RPR provides advantages of low equipment cost and simplicity and exhibits an improved bandwidth utilization due to statistical multiplexing. The bandwidth utilization is further increased by means of spatial reuse. In RPR, packets are removed from the ring by the corresponding destination node (destination stripping). The destination stripping enables nodes in different ring segments to transmit simultaneously, resulting in spatial reuse of bandwidth and an increased bandwidth utilization. Furthermore, RPR provides fairness, as opposed to today's Ethernet, and allows the full ring bandwidth to be utilized under normal (failure-free) operation conditions, as opposed to today's SONET/SDH rings where 50% of the available bandwidth is reserved for protection. Current RPR networks are single-channel systems (i.e., each fiber ring carries a single wavelength channel) and are expected to be primarily deployed in metro edge and metro core areas.

In the following sections, we explain RPR in greater detail, paying particular attention to its architecture, access control, fairness control, and protection.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Resilient packet ring
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Resilient packet ring
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Resilient packet ring
  • Martin Maier, Université du Québec, Montréal
  • Book: Optical Switching Networks
  • Online publication: 10 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511619731.014
Available formats
×