Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-09T19:55:39.279Z Has data issue: false hasContentIssue false

3 - Linear response theory

Published online by Cambridge University Press:  05 August 2012

Gabriele Giuliani
Affiliation:
Purdue University, Indiana
Giovanni Vignale
Affiliation:
University of Missouri, Columbia
Get access

Summary

Introduction

There are countless situations in physics when one is interested in calculating the response of a system to a small time-dependent perturbation acting on it. With some luck the response can be expanded in a power series of the strength of the perturbation, so that, to first order, it is a linear function of the latter. To compute this function is the objective of the linear response theory (LRT).

Linear response theory has many important applications to the study of electronic matter. Virtually all interactions of electrons with experimental probes (electromagnetic fields, beams of particles) can be regarded as small perturbations to the system: if they were not, one would not be probing the system, but the system modified by the probe. Consequently, the results of these experiments can be expressed in terms of linear response functions, which are properties of the unperturbed system. In particular it will turn out that the analytic structure of these functions is entirely determined by the eigenvalues and eigenfunctions of the unperturbed system. Conversely, a measure of the linear response as a function of the frequency of the perturbation enables us to determine the excitation energies of the system.

Beside being a cornerstone for the theory of single-particle properties to be developed in Chapter 8, the linear response functions also provide invaluable information in their own right. For example, as we will discuss in Chapter 5, the extent to which an external electrostatic potential is reduced by screening is controlled by the dynamical dielectric function which, in turn, is determined by the density–density response function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×