Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T04:25:07.810Z Has data issue: false hasContentIssue false

16 - Late stages of stellar evolution

Published online by Cambridge University Press:  08 January 2010

Erika Böhm-Vitense
Affiliation:
University of Washington
Get access

Summary

Completely degenerate stars, white dwarfs

In Chapter 14 we saw that low mass stars apparently lose their hydrogen envelope when they reach the tip of the asymptotic giant branch. What is left is a degenerate carbon–oxygen core surrounded by a helium envelope. The mass of this remnant is approximately 0.5 to 0.7 solar masses depending perhaps slightly on the original mass and metal abundances. The density is so high that the electrons are partly or completely degenerate except in the outer envelope. We also saw that central stars of planetary nebulae seem to outline the evolutionary track of these remnants which decrease in radius, still losing mass and increasing their surface temperature. Their luminosities do not seem to change much until they reach the region below the main sequence (see Fig. 14.14). In the interiors these remnants are not hot enough to start any new nuclear reactions. When they started to lose their hydrogen envelope they still had a helium burning and a hydrogen burning shell source. When the hydrogen envelope is lost the hydrogen burning shell source comes so close to the surface that it soon becomes too cool and is extinguished. The helium burning shell source survives longer but finally is also extinguished, when the star gets close to the white dwarf region. The remnant ends up as a degenerate star with no nuclear energy source in its interior but which still has very high temperatures. This is the beginning of the evolution of a white dwarf. It loses energy at the surface, which is replenished by energy from the interior, i.e. by thermal energy from the heavy particles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×