Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T11:24:13.529Z Has data issue: false hasContentIssue false

5 - A comparison of methods for constructing evolutionary networks from intraspecific DNA sequences

from Statistical approaches, data analysis and inference

Published online by Cambridge University Press:  05 July 2015

Giorgio Bertorelle
Affiliation:
Università degli Studi di Ferrara, Italy
Michael W. Bruford
Affiliation:
Cardiff University
Heidi C. Hauffe
Affiliation:
Edmund Mach Foundation, Trento, Italy
Annapaolo Rizzoli
Affiliation:
Edmund Mach Foundation, Trento, Italy
Cristiano Vernesi
Affiliation:
Edmund Mach Foundation, Trento, Italy
Patrick Mardulyn
Affiliation:
Universiteé Libre de Bruxelles
Insa Cassens
Affiliation:
Max-Planck-Institut für demografische Forschung
Michel C. Milinkovitch
Affiliation:
University of Geneva
Get access

Summary

In phylogeography or population genetic studies, evolutionary relationships among DNA haplotypes can be depicted either as a graph, called a ‘network’, with cycles (or ‘loops’), or as a set of phylogenetic trees (i.e. connected graphs with no circuits), possibly with multifurcation(s) and/or ancestral haplotype(s) (both represented by collapsing zero-length branches). For example, several equally optimal trees inferred under the maximum parsimony (MP) criterion display alternative relationships among haplotypes (Fig. 5.1a, b). A strict consensus tree can be used to summarize this set of trees (Fig. 5.1c), but this approach discards much of the historical information. Indeed, a strict consensus tree is typically compatible with many more alternative trees than those used to build it: e.g. the consensus in Fig. 5.1c is compatible with 105 different strictly bifurcating topologies although only two haplotypic trees have been used to build it. Furthermore, the consensus tree cannot easily summarize branch length information (e.g. in Fig. 5.1, taxon 4 is at the tip of a 0 step-long or a 1 steplong branch in trees (a) and (b), respectively). On the contrary, a network graph allows display much of the information contained in the data in a single figure (Fig. 5.1d). Therefore, the major advantage of such graphs over traditional phylogenetic trees is the possibility of using cycles (loops) to represent either ambiguities in the data or genuine reticulate evolution (due to e.g. recombination or horizontal gene transfer). In parsimony networks, sampled and unsampled haplotypes (white circles and black dots, respectively, in Fig. 5.1d) are symbolized by nodes (vertices) that are connected by edges, where each edge represents a single nucleotide substitution. Unsampled haplotypes are inferred to connect sampled haplotypes when the latter are separated by more than a single substitution. The so-called ‘degree’ of a node corresponds to the number of edges to which it is connected (e.g. in Fig. 5.1d, haplotype 2 is a node of degree 4).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×