Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-05T22:28:28.730Z Has data issue: false hasContentIssue false

Effects of mechanical stretch on actin polymerisation in fibroblasts of the periodontium

Published online by Cambridge University Press:  19 January 2010

Fiona Lyall
Affiliation:
University of Glasgow
A. J. El Haj
Affiliation:
University of Birmingham
Get access

Summary

Introduction

Periodontal tissues provide support and attachment for the teeth. The periodontium includes two mineralising connective tissues, alveolar bone and cementum, and two soft connective tissues, periodontal ligament and the lamina propria of the gingiva. The fibroblast is the predominant cell type in the soft periodontal connective tissues. This secretory cell synthesises extracellular matrix proteins including fibronectin, glycosaminoglycans (Hassell, Kimura & Hascall, 1986; Bartold, 1987) and a large array of collagens that are the most abundant structural proteins of periodontal connective tissues (reviewed by Narayanan & Page, 1983).

Remodelling of periodontal tissues is up-regulated by the application of mechanical forces which have been demonstrated to increase collagen turnover rates (Birkedal-Hansen, 1988; Sorsa et al., 1992) and to produce elevated levels of chondroitin sulphate in the fluid that drains periodontal tissues (Samuels, Pender & Last, 1993). Rapid turnover of collagens in the matrix of both gingiva (Page & Ammons, 1974) and periodontal ligament (Sodek, 1977) is also essential for continuous attachment of the roots to the alveolar bone.

To balance collagen synthesis and maintain the steady-state, collagen degradation must occur. Two pathways of collagen degradation have been identified: an extracellular collagenase-dependent route and an intracellular pathway independent of collagenase (Murphy & Reynolds, 1985). Notably, conditions of increased physical stress on the periodontal ligament as a result of the mechanical effects of orthodontic force increase collagenase activity in periodontal tissues (Sorsa et al., 1992).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×