Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-jrqft Total loading time: 0 Render date: 2024-07-16T04:42:41.996Z Has data issue: false hasContentIssue false

13 - Key role of fuel cells

Published online by Cambridge University Press:  22 January 2010

Michael Ball
Affiliation:
Shell, The Netherlands
Martin Wietschel
Affiliation:
Fraunhofer Institute for Systems and Innovation Research, Karlsruhe, Germany
Get access

Summary

Some of the most important benefits of hydrogen can only be realised if hydrogen is used in fuel cells; for instance, the high overall conversion efficiency compared with the internal combustion engine, as well as the reduction of local pollution and noise. Therefore, the market success of fuel cells plays a key role in a hydrogen economy. The following chapter gives a brief introduction to the fuel cell as a technology and describes the various types of fuel cells and their potential uses in mobile, stationary and portable applications. However, preparing for the structural changes in industry is just as important as the technical optimisation of fuel cells, and the remainder of the chapter is devoted to this aspect.

Historical development of fuel cells

Fuel-cell technology first took off more than 170 years ago. In 1839, the Welsh judge, Sir William Grove, presented the first fuel-cell battery, in which he was able to generate an electrical current from hydrogen and oxygen by reversing the process of electrolysis (Grove,1839). The electrodes were platinum and sulphuric acid was used as the electrolyte. Since the invention of the fuel cell, expectations of their broad market introduction have built up into waves several times, but have then crashed each time. One such wave is demonstrated by the speech of Wilhelm Ostwald, the famous electrochemist, to the Bunsengesellschaft in 1894, in which he stated that fuel cells are superior to steam engines and all other kinds of incineration technique (Ostwald, 1894).

Type
Chapter
Information
The Hydrogen Economy
Opportunities and Challenges
, pp. 348 - 384
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,DAT-Veedol-Report (2001). Dossier Kfz-Betrieb. Vogel Verlag und Druck GmbH & Co. KG.
Dauensteiner, A. (2001). Der Weg zum Ein-Liter-Auto – Minimierung aller Fahrwiderstände mit neuen Konzepten. Berlin: Springer Verlag.Google Scholar
Demuss, L. (2000). Technologische Veränderungen beim Übergang vom konventionellen Antriebsstrang zur Brennstoffzelle. In Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die Baden-Württembergische Industrie, ed. Wengel, J. and Schirrmeister, E.Karlsruhe: Fraunhofer ISI.Google Scholar
,DLR (Deutsches Zentrum für Luft- und Raumfahrt) (1997). Energie- und Schadstoffbilanzen von Elektrofahrzeugen mit Batterien und/oder Brennstoffzellen-Antrieben im Vergleich zu Kraftfahrzeugen mit Verbrennungsmotor, ed. Carpetis, C.STB-Bericht, Nr 16, DLR-97 44417 IB 404. Stuttgart: DLR, Institut für Technische Thermodynamik.
Erdmann, G. and Grahl, M. (2000). Competitiveness and economic impacts of fuel cell electric vehicles on the future German market. Proceedings Hyforum 2000, (September 11–15). Munich.Google Scholar
Feige, A. and Goes, F. (1999). Wandel in der Wertschöpfungskette. Automobilproduktion, 4 (1999).Google Scholar
,Freedom Car: Freedom Car Fuel Partnership (2005). Fuel cells Technologies Roadmap. www1.eere.energy.gov/vehiclesandfuels/about/partnerships/freedomcar/fc_goals.html.
Friedrich, J. and Noreikat, K. E. (1996). State of the art and development trends for fuel cells vehicles. Proceedings of the 11th World Hydrogen Energy Conference. Stuttgart, pp. 1757–1766.Google Scholar
Frost, & Sullivan, (2001). Stationary and Portable Fuel Cells – Developments, Markets and Opportunities. Report D226. New York: Frost & Sullivan.Google Scholar
Grahl, M. K. (2000). Ökonomische Systemanalyse zum Antrieb von Personenwagen mit Polymer-Elektrolyt-Brennstoffzellen unter Verwendung neuer Kraftstoffe. Dissertation. Berlin: Technical University Berlin.Google Scholar
Grove, W. R. (1839). On voltaic series and the combination of gases by platinum. Philosophical Magazine and Journal of Science, 14 (86), 127–130.Google Scholar
Gummert, G. and Suttor, W. (2006). Stationäre Brennstoffzellen – Technik und Markt. Heidelberg: C. F. Müller Verlag.Google Scholar
Hasenauer, U., Ragwitz, M., Eichhammer, W.et al. (2005). Energy Scientific & Technological Indicators and References (ESTIR). Lot 1: Fuel Cells and Hydrogen Technology. Final Report for the Directorate General for Research. Karlsruhe: Ecofys (Utrecht, NL), Fraunhofer ISI.Google Scholar
,HFPE (2005). European Hydrogen & Fuel Cell Technology Platform. Strategic Research Agenda. www.HFPeurope.org.
Höhlein, B. and Stolten, D. (1998). Pkw-Antrieb mit Verbrennungsmotor und Brennstoffzellen im Vergleich. 2. Euroforum-Fachtagung Brennstoffzellen. Stuttgart.Google Scholar
Hoogers, G. (2003). Fuel Cell Technology Handbook. Boca Raton, FA: CRC Press.Google Scholar
,IEA (International Energy Agency) (2005). Prospects for Hydrogen and Fuel Cells. IEA Energy Technology Analysis Series. Paris: OECD/IEA.
,IEA (International Energy Agency) (2007). Fuel Cells. IEA Technology Essentials. Paris: OECD/IEA.
Jochem, E., Bradke, H., Cremer, C.et al. (2007). Developing an Assessment Framework to Improve the Efficiency of R&D and the Market Diffusion of Energy Technologies EduaR&D. Report Contract No. 0327 287. Karlsruhe: Fraunhofer ISI.Google Scholar
Jörissen, L. and Garche, U. (2000). Brennstoffzellen für den Fahrzeugantrieb. In Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die Baden-Württembergische Industrie, ed. Wengel, J. and Schirrmeister, E.Karlsruhe: Fraunhofer ISI.Google Scholar
Kolke, R. (1999). Technische Optionen zur Verminderung der Verkehrsbelastung – Brennstoffzellenfahrzeuge. Berlin: Umweltbundesamt (Federal Environment Agency).Google Scholar
Koschorke, W., Bünger, U., Marscheider-Weidemann, F.et al. (2005). Anforderungen an das Handwerk durch die Innovation Brennstoffzelle. Fraunhofer IRB Verlag.Google Scholar
Krewitt, W., Pehnt, M., Fischedick, M. and Temming, H. V. (eds.) (2004). Brennstoffzellen in der Kraft-Wärme-Kopplung – Ökobilanzen, Szenarien, Marktpotenziale. Berlin: Erich Schmidt Verlag.
Krewitt, W., Nitsch, J., Fischedick, M., Pehnt, M. and Temming, H. (2006). Market perspectives of stationary fuel cells in a sustainable energy supply system – long-term scenarios for Germany. Energy Policy, 34 (2006), 793–803.CrossRefGoogle Scholar
Larminie, J. and Dicks, A. (2003). Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons Ltd.CrossRefGoogle Scholar
Logan, B., Hamelers, B., Rozendal, R.et al. (2006). Microbial fuel cells: methodology and technology. Environmental Science and Technology, 40 (17), 5181–5192.CrossRefGoogle ScholarPubMed
Maruo, K. (1998). Strategic Alliances for the Development of Fuel Cell Vehicles. University of Gothenburg.Google Scholar
Nitsch, J. and Dienhart, H. (1999). Konkurrenzsituation und Marktchancen von Brennstoffzellen-Systemen. Proceedings, Sechstes OTTI-Fachforum ‘Einsatz von Brennstoffzellen’: Leipzig.Google Scholar
Oertel, D. and Fleischer, T. (2003). Fuel Cells. Impact and Consequences of Fuel Cells Technology on Sustainable Development. Technical Report Series EUR 20681 EN. Seville: European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS).Google Scholar
Olah, G. A., Goeppert, A. and Prakash, G. K. S. (2006). Beyond Oil and Gas: The Methanol Economy. Weinheim: W-VCH.Google Scholar
Ostwald, W. (1894). Die Wissenschaftliche Elektrochemie der Gegenwart und die Technische der Zukunft. Zeitschrift Elektrochemie, 1 (4) (1894), 81–84 and 122–125.CrossRefGoogle Scholar
Pehnt, M. (2001). Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik. Dissertation. VDI-Verlag, Fortschritt-Berichte Reihe 6, No. 476.Google Scholar
Schirrmeister, E., Marscheider-Weidemann, F. and Wengel, J. (2002). Auswirkungen des Einsatzes der Brennstoffzelle im Kraftfahrzeug auf die Industrie in Nordrhein-Westfalen. Szenarien für die Einführung und spezielle Chance Nordrhein-Westfalens. In co-operation with Agiplan ProjectManagement, Mülheim and Research Centre Jülich. Karlsruhe: Fraunhofer ISI.Google Scholar
Ullmann, (2003). Hydrogen. In Ullmann's Encyclopedia of Industrial Chemistry. 6th edn. vol. 17. Weinheim: WILEY-VCH, pp. 85–240.Google Scholar
Vaillant (2007). www.initiative-brennstoffzelle.de.
,VDMA (2002). Markteinführung von Brennstoffzellen-Produkten: Auswirkungen auf den Maschinen- und Anlagenbau. Frankfurt: VDMA.
Walz, R., Dreher, C., Marscheider-Weidemann, F.et al. (2001). Arbeitswelt in einer nachhaltigen Wirtschaft – Analyse der Wirkungen von Umweltschutzstrategien auf Wirtschaft und Arbeitsstrukturen. Texte, No. 44/01. Berlin: Umweltbundesamt.Google Scholar
Wengel, J. and Schirrmeister, E. (eds.) (2000). Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die Baden-Württembergische Industrie. Karlsruhe: Fraunhofer ISI.
Winter, C.-, J. (2007). Energy efficiency, no: it's exergy efficiency!International Journal of Hydrogen Energy, 32 (17), 4109–4111.CrossRefGoogle Scholar
Wurster, R. (1999). PEM fuel cells in stationary and mobile applications – Pathways to Commercialization. Sixth International Technical Congress - BIEL'99. Biel: Bienal de la Industria Eléctrica y Luminotécnica. CADIEM Cámara Argentina de Industrias Electromecánicas.Google Scholar
Hoogers, G. (2003). Fuel Cell Technology Handbook. Boca Raton, FA: CRC Press.Google Scholar
Larminie, J. and Dicks, A. (2003). Fuel Cell Systems Explained. West Sussex, England: John Wiley & Sons Ltd.CrossRefGoogle Scholar
Oertel, D. and Fleischer, T. (2003). Fuel Cells. Impact and Consequences of Fuel Cells Technology on Sustainable Development. Technical Report Series EUR 20681 EN. Seville: European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS).Google Scholar
Pehnt, M. (2001). Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik. Dissertation. VDI-Verlag, Fortschrittsbericht Reihe 6, Nr 476.Google Scholar
Pehnt, M. (2002). Energierevolution Brennstoffzelle?Weinheim: WILEY-VCH.Google Scholar
Sundmacher, K., Kienle, A., Pesch, H. J., Berndt, J. F. and Huppmann, G. (2007). Molten Carbonate Fuel Cells. Weinheim: WILEY-VCH.CrossRefGoogle Scholar
Winkler, W. (2002). Brennstoffzellenanlagen. Berlin: Springer Verlag.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×