Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T06:24:36.965Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  06 July 2010

Denny D. Tang
Affiliation:
MagIC Technologies, Inc., California
Yuan-Jen Lee
Affiliation:
MagIC Technologies, Inc., California
Get access

Summary

The advent of semiconductor technology has impacted the lives of many of us since the 1970s. Silicon CMOS (complementary metal-oxide-semiconductor) devices are practically ubiquitous, and by the year 2000, the value of the semiconductor industry exceeded that of the automobile industry. The magnetic industry, on the other hand, is much smaller than the semiconductor industry. Engineering schools of universities rarely cover any courses in this discipline. Nonetheless, a tiny magnetic recording device is in the hard disk of every computer. Like CMOS devices, magnetic recording technology is being scaled down from generation to generation. At the time of writing, the physical size of the magnetic bit remains smaller than a DRAM bit on silicon chips.

Researchers working in these two communities had little in common until the development of the modern magnetic random access memory, or MRAM. A MRAM chip is built by integrating magnetic tunneling junction (MTJ) devices onto the silicon CMOS circuits. The research activity of MTJs in academia and industry, both hard disk and semiconductor, has been very active since it first showed signs of technology implication in the mid 1990s. That effort led to the mass production of the MTJ recording head in hard disk in 2006. In the same year, the semiconductor industry announced the first successful introduction of an MTJ memory product. The viability of MTJ technology is proven. It is expected that research activities will develop further, which will increase cooperation between these two research communities.

Type
Chapter
Information
Magnetic Memory
Fundamentals and Technology
, pp. ix - x
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×