Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-15T19:39:40.620Z Has data issue: false hasContentIssue false

2 - The tectonics of Mercury

Published online by Cambridge University Press:  30 March 2010

Thomas R. Watters
Affiliation:
Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC
Francis Nimmo
Affiliation:
Department of Earth and Planetary Sciences, University of California, Santa Cruz
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Mercury has a remarkable number of landforms that express widespread deformation of the planet's crustal materials. Deformation on Mercury can be broadly described as either distributed or basin-localized. The distributed deformation on Mercury is dominantly compressional. Crustal shortening is reflected by three landforms, lobate scarps, high-relief ridges, and wrinkle ridges. Lobate scarps are the expression of surface-breaking thrust faults and are widely distributed on Mercury. High-relief ridges are closely related to lobate scarps and appear to be formed by high-angle reverse faults. Wrinkle ridges are landforms that reflect folding and thrust faulting and are found largely in smooth plains material within and exterior to the Caloris basin. The Caloris basin has an array of basin-localized tectonic features. Basin-concentric wrinkle ridges in the interior smooth plains material are very similar to those found in lunar mascon basins. The Caloris basin also has the only clear evidence of broad-scale, extensional deformation. Extension of the interior plains materials is expressed as a complex pattern of basin-radial and basin-concentric graben. The graben crosscut the wrinkle ridges in Caloris, suggesting that they are among the youngest tectonic features on Mercury. The tectonic features have been used to constrain the mechanical and thermal structure of Mercury's crust and lithosphere and to test models for the origin of tectonic stresses. Modeling of lobate scarp thrust faults suggests that the likely depth to the brittle–ductile transition (BDT) is 30 to 40 km.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. V., Schlische, R. W., and Withjack, M. O. (2001). The geometric and statistical evolution of normal fault systems: An experimental study of the effects of mechanical layer thickness on scaling laws. J. Struct. Geol., 23, 1803–1819.CrossRefGoogle Scholar
Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L., and Tracer, G. B. (1987). The mass, gravity field and ephemeris of Mercury. Icarus, 71, 337–349.CrossRefGoogle Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., and Slade, M. A. (1996). Shape and orientation of Mercury from radar ranging data. Icarus, 124, 690–697.CrossRefGoogle Scholar
André, S. L., Watters, T. R., and Robinson, M. S. (2005). The long wavelength topography of Beethoven and Tolstoj basins, Mercury. Geophys. Res. Lett., 32, L21202, doi:10.1029/2005GL023627.CrossRefGoogle Scholar
Baldwin, R. B. (1963). The Measure of the Moon. Chicago, IL: University of Chicago Press.Google Scholar
Binder, A. B. (1982). Post-Imbrian global lunar tectonism: Evidence for an initially totally molten Moon. Moon and the Planets, 26, 117–133.CrossRefGoogle Scholar
Binder, A. B. and Gunga, H. C. (1985). Young thrust-fault scarps in the highlands: Evidence for an initially totally molten Moon. Icarus, 63, 421–441.CrossRefGoogle Scholar
Breuer, D., Spohn, T., and Wullner, U. (1993). Mantle differentiation and the crustal dichotomy of Mars. Planet. Space Sci., 41, 269–283.CrossRefGoogle Scholar
Brewer, J. A., Smithson, S. B., Oliver, J. E., Kaufman, S., and Brown, L. D. (1980). The Laramide orogeny: Evidence from COCORP deep crustal seismic profiles in the Wind River mountains, Wyoming. Tectonophysics, 62, 165–189.CrossRefGoogle Scholar
Bryan, W. B. (1973). Wrinkle-ridges as deformed surface crust on ponded mare lava. Geochim. Cosmochim. Acta, 1, (Suppl.), 93–106.Google Scholar
Buck, W. R. (1991). Modes of continental lithospheric extension. J. Geophys. Res., 96, 20 161–20 178.CrossRefGoogle Scholar
Byerlee, J. (1978). Friction of rocks. Pure Appl. Geophys., 116, 615–626.CrossRefGoogle Scholar
Cartwright, J. A., Trudgill, B. D., and Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah. J. Struct. Geol., 17, 1319–1326.CrossRefGoogle Scholar
Cartwright, J. A., Mansfield, C. S., and Trudgill, B. D. (1996). The growth of normal faults by segment linkage. Geol. Soc. Am. Spec. Publ., 99, 163–177.CrossRefGoogle Scholar
Clark, P. E., Leake, M. A., and Jurgens, R. F. (1988). Goldstone radar observations of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Clark, R. and Cox, S. (1996). A modern regression approach to determining fault displacement-length scaling relationships. J. Struct. Geol., 18, 147–154.CrossRefGoogle Scholar
Cook, A. C. and Robinson, M. S. (2000). Mariner 10 stereo image coverage of Mercury. J. Geophys. Res., 105, 9429–9443.CrossRefGoogle Scholar
Cordell, B. M. and Strom, R. G. (1977). Global tectonics of Mercury and the Moon. Phys. Earth Planet. Inter., 15, 146–155.CrossRefGoogle Scholar
Cowie, P. A. and Scholz, C. H. (1992a). Physical explanation for the displacement–length relationship of faults using a post-yield fracture-mechanics model. J. Struct. Geol., 14, 1133–1148.CrossRefGoogle Scholar
Cowie, P. A. and Scholz, C. H. (1992b). Displacement-length scaling relationship for faults data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.CrossRefGoogle Scholar
Cowie, P. A. and Shipton, Z. K. (1998). Fault tip displacement gradients and process zone dimensions. J. Struct. Geol., 20, 983–997.CrossRefGoogle Scholar
Cowie, P. A., Scholz, C. H., Edwards, M., and Malinverno, A. (1993). Fault strain and seismic coupling on mid-ocean ridges. J. Geophys. Res., 98, 17 911–17 920.CrossRefGoogle Scholar
Davis, P. A. and Soderblom, L. A. (1984). Modeling crater topography and albedo from monoscopic Viking Orbiter images. Icarus, 89, 9449–9457.Google Scholar
Dawers, N. H. and Anders, M. H. (1995). Displacement-length scaling and fault linkage. J. Struct. Geol., 17, 607–614.CrossRefGoogle Scholar
Dawers, N. H., Anders, M. H., and Scholz, C. H. (1993). Growth of normal faults: displacement length scaling. Geology, 21, 1107–1110.2.3.CO;2>CrossRefGoogle Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L, McCoy, T. J., Ernst, E. M., Head, J. W., Watters, T. R., and Chabot, N. L. (2009). The evolution of Mercury's crust: A global perspective from MESSENGER. Science, 324, 613–618.Google ScholarPubMed
Dombard, A. J. and Hauck, S. A. (2008). Despinning plus global contraction and the orientation of lobate scarps on Mercury. Icarus, 198, 274–276.CrossRefGoogle Scholar
Dombard, A. J., Hauck, S. A., Solomon, S. C., and Phillips, R. J. (2001). Potential for long-wavelength folding on Mercury (abs.). Lunar Planet. Sci. Conf. XXXII, 2035.Google Scholar
Dzurisin, D. (1978). The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J. Geophys. Res., 83, 4883–4906.CrossRefGoogle Scholar
Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge: Cambridge University Press, p. 277.CrossRefGoogle Scholar
Foster, A. and Nimmo, F. (1996). Comparisons between the rift systems of East Africa, Earth, and Beta Regio, Venus. Earth Planet. Sci. Lett., 143, 183–195.CrossRefGoogle Scholar
Freed, A. M., Melosh, H. J., and Solomon, S. C. (2001). Tectonics of mascon loading: Resolution of the strike-slip faulting paradox. J. Geophys. Res., 106, 20 603–20 620.CrossRefGoogle Scholar
Gillespie, P. A., Walsh, J. J., and Watterson, J. (1992). Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation. J. Struct. Geol., 14, 1157–1172.CrossRefGoogle Scholar
Golombek, M. P. (1979). Structural analysis of lunar grabens and the shallow crustal structure of the Moon. J. Geophys. Res., 84, 4657–4666.CrossRefGoogle Scholar
Golombek, M. P., Plescia, J. B., and Franklin, B. J. (1991). Faulting and folding in the formation of planetary wrinkle ridges. Proc. Lunar Planet. Sci. Conf. 21, 679–693.Google Scholar
Golombek, M. P., Anderson, F. S., and Zuber, M. T. (2001). Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. J. Geophys. Res., 106, 23 811–23 821.CrossRefGoogle Scholar
Gries, R. (1983). Oil and gas prospecting beneath Precambrian of foreland thrust plates in Rocky Mountains. Am. Assoc. Petrol. Geol. Bull., 67, 1–28.Google Scholar
Hapke, B., Danielson, E., Klaasen, K., and Wilson, L. (1975). Photometric observations of Mercury from Mariner 10. J. Geophys. Res., 80, 2431–2443.CrossRefGoogle Scholar
Hardacre, K. M. and Cowie, P. A. (2003). Controls on strain localization in a two-dimensional elastoplastic layer: Insights into size-frequency scaling of extensional fault populations. J. Geophys. Res., 108, 2529.CrossRefGoogle Scholar
Harmon, J. K. and Campbell, D. B. (1988). Radar observations of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 101–117.Google Scholar
Harmon, J. K., Campbell, D. B., Bindschadler, K. L., Head, J. W., and Shapiro, I. I. (1986). Radar altimetry of Mercury: A preliminary analysis. J. Geophys. Res., 91, 385–401.CrossRefGoogle Scholar
Hauck, S. A., Dombard, A. J., Phillips, R. J., and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713–728.CrossRefGoogle Scholar
Hawkins, S. E., Boldt, J., Darlington, E. H., Espiritu, R., Gold, R., Gotwols, B., Grey, M., Hash, C., Hayes, J., Jaskulek, S., Kardian, C., Keller, M., Malaret, E., Murchie, S. L., Murphy, P., Peacock, K., Prockter, L., Reiter, A., Robinson, M. S., Schaefer, E., Shelton, R., Sterner, R., Taylor, H., Watters, T., and Williams, B. (2007). The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft. Space Sci. Rev., 131, 247–338.CrossRefGoogle Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T., and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 69–72.CrossRefGoogle ScholarPubMed
Hiesinger, H. and Head, J. W. (2000). Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data. J. Geophys. Res., 105, 11 999–12 022.CrossRefGoogle Scholar
Howard, K. A. and Muehlberger, W. R. (1973). Lunar thrust faults in the Taurus-Littrow region. Apollo 17 Prel. Sci. Rep., NASA Spec. Publ., SP-330, 31–22 – 31–25.Google Scholar
Jackson, J. A. (1980). Reactivation of basement faults and crustal shortening in orogenic belts. Nature, 283, 343–346.CrossRefGoogle Scholar
Jaeger, J. C. and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics, 3rd edn. London: Chapman and Hall, p. 593.Google Scholar
Janes, D. M. and Melosh, H. J. (1990). Tectonics of planetary loading: A general model and results. J. Geophys. Res., 95, 21 345–21 355.CrossRefGoogle Scholar
Jeanloz, R., Mitchell, D. L., Sprague, A. L., and DePater, I. (1995). Evidence for a basalt-free surface on Mercury and implications for internal heat. Science, 268, 1455–1457.CrossRefGoogle ScholarPubMed
Johnson, C. L. and Sandwell, D. T. (1992). Joints in Venusian lava flows. J. Geophys. Res., 97, 13 601–13 610.CrossRefGoogle Scholar
Kennedy, P. J., Freed, A. M., and Solomon, S. C. (2008). Mechanisms of faulting in and around Caloris basin, Mercury. J. Geophys. Res., 113, E08004, doi:10.1029/2007JE002992.CrossRefGoogle Scholar
King, S. D. (2008). Pattern of lobate scarps on Mercury's surface reproduced by a model of mantle convection. Nature Geoscience, 1, 229–232.CrossRefGoogle Scholar
Kirk, R. L., Barrett, J. M., and Soderblom, L. A. (2003). Photoclinometry made simple…? In Advances in Planetary Mapping 2003. Houston, TX: Lunar and Planetary Institute.Google Scholar
Leith, A. C. and McKinnon, W. B. (1996). Is there evidence for polar wander on Europa?Icarus, 120, 387–398.CrossRefGoogle Scholar
Lucchitta, B. K. (1976). Mare ridges and related highland scarps: Results of vertical tectonism. Geochim. Cosmochim. Acta, 3, (Suppl.), 2761–2782.Google Scholar
Maggi, A., Jackson, J. A., McKenzie, D., and Priestley, K. (2000). Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 495–498.2.0.CO;2>CrossRefGoogle Scholar
Malin, M. C. (1976). Observations of intercrater plains on Mercury. Geophys. Res. Lett., 3, 581–584.CrossRefGoogle Scholar
Malin, M. C. and Dzurisin, D. (1977). Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships. J. Geophys. Res., 82, 376–388.CrossRefGoogle Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., and Holin, I. V. (2007). Large longitude libration of Mercury reveals a molten core. Science, 316, 710–714.CrossRefGoogle ScholarPubMed
Marrett, R. and Allmendinger, R. W. (1991). Estimates of strain due to brittle faulting: Sampling of fault populations. J. Struct. Geol., 13, 735–738.CrossRefGoogle Scholar
Matsuyama, I. and Nimmo, F. (2009). Gravity and tectonic patterns of Mercury: The effect of tidal deformation, spin-orbit resonance, non-zero eccentricity, despinning and reorientation. J. Geophys. Res., 114, E01010.CrossRefGoogle Scholar
Matsuyama, I., Mitrovica, J. X., Manga, M., Perron, J. T., and Richards, M. A. (2006). Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res., 111, E2, E02003.CrossRefGoogle Scholar
Maxwell, T. A. and Gifford, A. W. (1980). Ridge systems of Caloris: Comparison with lunar basins. Proc. Lunar Planet. Sci. Conf. 11, 2447–2462.Google Scholar
Maxwell, T. A., El-Baz, F., and Ward, S. W. (1975). Distribution, morphology, and origin of ridges and arches in Mare Serenitatis. Geol. Soc. Am. Bull., 86, 1273–1278.2.0.CO;2>CrossRefGoogle Scholar
McEwen, A. S. (1991). Photometric functions for photoclinometry and other applications. Icarus, 92, 298–311.CrossRefGoogle Scholar
McGill, G. E. (1971). Attitude of fractures bounding straight and arcuate lunar rilles. Icarus, 14, 53–58.CrossRefGoogle Scholar
McGill, G. E. (1986). The giant polygons of Utopia, northern Martian plains. Geophys. Res. Lett., 13, 705–708.CrossRefGoogle Scholar
McKenzie, D., Nimmo, F., Jackson, J. A., Gans, P. B., and Miller, E. L. (2000). Characteristics and consequences of flow in the lower crust. J. Geophys. Res., 105, 11 029–11 046.CrossRefGoogle Scholar
McKinnon, W. B. (1980). Large impact craters and basins: Mechanics of syngenetic and postgenetic modification. Ph.D. thesis, California Institute of Technology.
McKinnon, W. B. (1986). Tectonics of the Caloris basin, Mercury (abs.). In Mercury: Program and Abstracts. Tucson, AZ: Div. Planet. Sci., Amer. Astron. Soc.Google Scholar
McNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. J. Geophys. Res., 89, 1180–1194.CrossRefGoogle Scholar
Mege, D. and Reidel, S. P. (2001). A method for estimating 2D wrinkle ridge strain from application of fault displacement scaling to the Yakima folds, Washington. Geophys. Res. Lett., 28, 3545–3548.CrossRefGoogle Scholar
Melosh, H. J. (1977). Global tectonics of a despun planet. Icarus, 31, 221–243.CrossRefGoogle Scholar
Melosh, H. J. (1978). The tectonics of mascon loading. Proc. Lunar Planet. Sci. Conf. 9, 3513–3525.Google Scholar
Melosh, H. J. (1980). Tectonic patterns on a tidally distorted planet. Icarus, 43, 454–471.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. Oxford Monographs on Geology and Geophysics, No. 11. New York, NY: Oxford University Press, p. 245.Google Scholar
Melosh, H. J. and Dzurisin, D. (1978a). Mercurian global tectonics: A consequence of tidal despinning?Icarus, 35, 227–236.CrossRefGoogle Scholar
Melosh, H. J. and Dzurisin, D. (1978b). Tectonic implications for gravity structure of Caloris basin, Mercury. Icarus, 33, 141–144.CrossRefGoogle Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Montesi, L. G. J. and Zuber, M. T. (2003a). Spacing of faults at the scale of the lithosphere and localization instability: 1. Theory. J. Geophys. Res., 108, 2110.Google Scholar
Montesi, L. G. J. and Zuber, M. T. (2003b). Spacing of faults at the scale of the lithosphere and localization instability: 2. Application to the Central Indian Basin. J. Geophys. Res., 108, 2111.Google Scholar
Mouginis-Mark, P. J. and Wilson, L. (1981). MERC: A FORTRAN IV program for the production of topographic data for the planet Mercury. Comput. Geosci., 7, 35–45.CrossRefGoogle Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L., and Blewett, D. T. (2008). Geology of the Caloris Basin, Mercury: A new view from MESSENGER. Science, 321, 73–76.CrossRefGoogle Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O'Leary, B., Strom, R. G., Suomi, V., and Trask, N. (1974). Mercury's surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169–179.CrossRefGoogle ScholarPubMed
Nimmo, F. (2002). Constraining the crustal thickness of Mercury from viscous topographic relaxation. Geophys. Res. Lett., 29, 1063.CrossRefGoogle Scholar
Nimmo, F. and Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., 105, 11 969–11 979.CrossRefGoogle Scholar
Nimmo, F. and Stevenson, D. J. (2001). Estimates of Martian crustal thickness from viscous relaxation of topography. J. Geophys. Res., 106, 5085–5098.CrossRefGoogle Scholar
Nimmo, F. and Watters, T. R. (2004). Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness. Geophys. Res. Lett., 31, L02701.CrossRefGoogle Scholar
Parmentier, E. M. and Haxby, W. F. (1986). Thermal stresses in the oceanic lithosphere. Evidence from geoid anomalies at fracture zones. J. Geophys. Res., 91, 7193–7204.CrossRefGoogle Scholar
Parsons, B. and McKenzie, D. (1978). Mantle convection and thermal structure of plates. J. Geophys. Res., 93, 4485–4496.CrossRefGoogle Scholar
Peale, S. J. (2003). Mercury's interior from geodesy of librations (abs.). Eos Trans. Am. Geophys. Union, 84(46), (Fall Meet. Suppl.), G42C–03.Google Scholar
Pechmann, J. B. (1980). The origin of polygonal troughs on the northern plains of Mars. Icarus, 42, 185–210, doi:10.1016/0019-1035(80)90071–8.CrossRefGoogle Scholar
Pechmann, J. B. and Melosh, H. J. (1979). Global fracture patterns of a despun planet application to Mercury. Icarus, 38, 243–250.CrossRefGoogle Scholar
Pike, R. J. (1988). Geomorphology of impact craters on Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 165–273.Google Scholar
Pike, R. J. and Spudis, P. D. (1987). Basin-ring spacing on the Moon, Mercury, and Mars. Earth, Moon, and Planets, 39, 129–194.CrossRefGoogle Scholar
Phillips, R. J. and Solomon, S. C. (1997). Compressional strain history of Mercury (abs.). Lunar Planet. Sci. Conf. XXVIII, 1107–1108.Google Scholar
Phillips, R. J., Conel, J. E., Abbott, E. A., Sjogren, W. L., and Morton, J. B. (1972). Mascons: Progress toward a unique solution for mass distribution. J. Geophys. Res., 77, 7106–7114.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 97, 1289–1299.2.0.CO;2>CrossRefGoogle Scholar
Pritchard, M. E. and Stevenson, D. J. (2000). Thermal aspects of a lunar origin by giant impact. In Origin of the Earth and Moon, ed. Canup, R. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 179–196.Google Scholar
Reidel, S. P. (1984). The Saddle Mountains: The evolution of an anticline in the Yakima fold belt. Am. Jour. Sci., 284, 942–978.CrossRefGoogle Scholar
Rice, J. R. (1992). Fault stress states, pore pressure distributions and the weakness of the San Andreas fault. In Fault Mechanics and Transport Properties of Rocks, ed. Evans, B. and Wong, T.-F.. San Diego: Academic Press, pp. 475–503.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for Mercurian volcanism. Science, 275, 197–200.CrossRefGoogle ScholarPubMed
Robinson, M. S., Davies, M. E., Colvin, T. R., and Edwards, K. E. (1999). A revised control network for Mercury. J. Geophys. Res., 104, 30 847–30 852.CrossRefGoogle Scholar
Robinson, M. A., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E., Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L., Prockter, L. M., Solomon, S. C., and Watters, T. R. (2008). Reflectance and color variations on Mercury: Indicators of regolith processes and compositional heterogeneity. Science, 321, 66–69.CrossRefGoogle Scholar
Sarid, A. R., Greenberg, R., Hoppa, G. V., Hurford, T. A., Tufts, B. R., and Geissler, P. (2002). Polar wander and surface convergence of Europa's ice shell: Evidence from a survey of strike-slip displacement. Icarus, 158, 24–41.CrossRefGoogle Scholar
Schaber, G. G., Boyce, J. M., and Trask, N. J. (1977). Moon-Mercury large impact structures, isostasy and average crustal viscosity. Phys. Earth Planet. Inter., 15, 189–201.CrossRefGoogle Scholar
Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge University Press, p. 471.CrossRefGoogle Scholar
Scholz, C. H. and Cowie, P. A. (1990). Determination of total strain from faulting using slip measurements. Nature, 346, 837–839.CrossRefGoogle Scholar
Schubert, G., Ross, M. N., Stevenson, D. J., and Spohn, T. (1988). Mercury's thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Schultz, R. A. (1997). Displacement-length scaling for terrestrial and Martian faults: Implications for Valles Marineris and shallow planetary grabens. J. Geophys. Res., 102, 12 009–12 015.CrossRefGoogle Scholar
Schultz, R. A. (1999). Understanding the process of faulting: Selected challenges and opportunities at the edge of the 21st century. J. Struct. Geol., 21, 985–993.CrossRefGoogle Scholar
Schultz, R. A. (2000). Localizaton of bedding-plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12 035–12 052.CrossRefGoogle Scholar
Schultz, R. A. and Fori, A. N. (1996). Fault-length statistics and implications of graben sets at Candor Mensa, Mars. J. Struct. Geol., 18, 272–383.CrossRefGoogle Scholar
Schultz, R. A. and Fossen, H. (2002). Displacement-length scaling in three dimensions: The importance of aspect ratio and application to deformation bands. J. Struct. Geol., 24, 1389–1411.CrossRefGoogle Scholar
Schultz, R. A. and Watters, T. R. (2001). Forward mechanical modeling of the Amenthes Rupes thrust fault on Mars. Geophys. Res. Lett., 28, 4659–4662.CrossRefGoogle Scholar
Smrekar, S. E. and Phillips, R. J. (1991). Venusian highlands geoid to topography ratios and their implications. Earth Planet. Sci. Lett., 107, 582–597.CrossRefGoogle Scholar
Smrekar, S. E., Moreels, P., and Franklin, B. J. (2002). Characterization and formation of polygonal fractures on Venus. J. Geophys. Res., 107, 8–1 – 8–18.CrossRefGoogle Scholar
Solomatov, V. S. (1995). Scaling of temperature-dependent and stress-dependent viscosity convection. Phys. Fluids, 7, 266–274.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L. N. (2000). Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105, 21 795–21 817.CrossRefGoogle Scholar
Solomatov, V. S. and Reese, C. C. (2001). Mantle convection and thermal evolution of Mercury revisited (abs.). In Workshop on Mercury: Space Environment, Surface and Interior. Houston, TX: Lunar and Planetary Institute, 1097, 92–95.Google Scholar
Solomon, S. C. (1976). Some aspects of core formation in Mercury. Icarus, 28, 509–521.CrossRefGoogle Scholar
Solomon, S. C. (1977). The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter., 15, 135–145.CrossRefGoogle Scholar
Solomon, S. C. (1978). On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett., 5, 461–464.CrossRefGoogle Scholar
Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Phys. Earth Planet. Inter., 19, 168–182.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1979). Vertical movement in mare basins: Relation to mare emplacement, basin tectonics and lunar thermal history. J. Geophys. Res., 84, 1667–1682.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1980). Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys. Space Phys., 18, 107–141.CrossRefGoogle Scholar
Solomon, S. C., McNutt, R. L., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W., Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Philips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I., and Zuber, M. T. (2001). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 1445–1465.CrossRefGoogle Scholar
Solomon, S. C., McNutt, R. L., Gold, R. E., and Domingue, D. L. (2007). MESSENGER mission overview. Space Sci. Rev., 131, 3–39.CrossRefGoogle Scholar
Solomon, S. C., McNutt, R. L., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A., and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER's first Mercury flyby. Science, 321, 59–62.CrossRefGoogle ScholarPubMed
Spohn, T. (1991). Mantle differentiation and thermal evolution of Mars, Mercury and Venus. Icarus, 90, 222–236.CrossRefGoogle Scholar
Sprague, A. L., Nash, D. B., Witteborn, F. C., and Cruikshank, D. P. (1997). Mercury's feldspar connection: Mid-IR measurements suggest plagioclase. Adv. Space Res., 19, 1507–1510.CrossRefGoogle Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Stone, D. S. (1985). Geologic interpretation of seismic profiles, Big Horn Basin, Wyoming: Part I. East Flank. In Seismic Exploration of the Rocky Mountain Region, ed. Gries, R. R. and Dyer, R. C.. Denver, CO: Rocky Mountain Association of Geologists, pp. 165–174.Google Scholar
Strom, R. G. (1972). Lunar mare ridges, rings and volcanic ring complexes. Mod. Geol., 2, 133–157.Google Scholar
Strom, R. G., Trask, N. J., and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 2478–2507.CrossRefGoogle Scholar
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C., and Head, J. W. (2008). Mercury cratering record viewed from MESSENGER's first flyby. Science, 321, 79–81.CrossRefGoogle ScholarPubMed
Tanaka, K. L. and Davis, P. A. (1988). Tectonic history of the Syria Planum province of Mars. J. Geophys. Res., 93, 14 893–14 907.CrossRefGoogle Scholar
Thomas, P. G. (1997). Are there other tectonics than tidal despinning, global contraction and Caloris-related events on Mercury? A review of questions and problems. Planet. Space Sci., 45, 3–13.CrossRefGoogle Scholar
Thomas, P. G., Masson, P., and Fleitout, L. (1988). Tectonic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google ScholarPubMed
Turcotte, D. L. (1983). Thermal stresses in planetary elastic lithospheres (Proc. Lunar Planet. Sci. Conf. 13). J. Geophys. Res. (Suppl. 88), A585–A587.CrossRefGoogle Scholar
Turcotte, D. L. and Schubert, G. (2002). Geodynamics: Application of Continuum Physics to Geological Problems. Cambridge: Cambridge University Press, p. 450.CrossRefGoogle Scholar
Turcotte, D. L., Willemann, R. J., Haxby, W. F., and Norberry, J. (1981). Role of membrane stresses in the support of planetary topography. J. Geophys. Res., 86, 3951–3959.CrossRefGoogle Scholar
Turtle, E. P. and Pierazzo, E. (1998). Constraints on the size of the Vredefort impact crater from numerical modeling. Meteorit. Planet. Sci., 33, 483–490.CrossRefGoogle Scholar
Vilas, F. (1988). Surface composition of Mercury from reflectance spectrophotometry. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google Scholar
Walsh, J. and Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10, 239–247.CrossRefGoogle Scholar
Watters, T. R. (1988). Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res., 93, 10 236–10 254.CrossRefGoogle Scholar
Watters, T. R. (1991). Origin of periodically spaced wrinkle ridges on the Tharsis plateau of Mars. J. Geophys. Res., 96, 15 599–15 616.CrossRefGoogle Scholar
Watters, T. R. (1992). A system of tectonic features common to Earth, Mars and Venus. Geology, 20, 609–612.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98, 17 049–17 060.CrossRefGoogle Scholar
Watters, T. R. (2003). Thrust faulting along the dichotomy boundary in the eastern hemisphere of Mars. J. Geophys. Res., 108 (E6), 5054, doi:10.1029/2002JE001934.CrossRefGoogle Scholar
Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171, 284–294.CrossRefGoogle Scholar
Watters, T. R. and Konopliv, A. S. (2001). The topography and gravity of Mare Serenitatis: Implications for subsidence of the mare surface. Planet. Space Sci., 49, 743–748.CrossRefGoogle Scholar
Watters, T. R. and Robinson, M. S. (1997). Radar and photoclinometric studies of wrinkle ridges on Mars. J. Geophys. Res., 102, 10 889–10 903.CrossRefGoogle Scholar
Watters, T. R. and Robinson, M. S. (1999). Lobate scarps and the origin of the Martian crustal dichotomy. J. Geophys. Res., 104, 18 981–18 990.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (1998). Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology, 26, 991–994.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., and Robinson, M. S. (2000). Displacement–length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophys. Res. Lett., 27, 3659–3662.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (2001). Large-scale lobate scarps in the southern hemisphere of Mercury. Planet. Space Sci., 49, 1523–1530.CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S., and Cook, A. C. (2002). The mechanical and thermal structure of Mercury's early lithosphere. Geophys. Res. Lett., 29, 1542.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., Bina, C. R., and Spudis, P. D. (2004). Thrust faults and the global contraction of Mercury. Geophys. Res. Lett., 31, L04071 doi:10.1029/2003GL019171.CrossRefGoogle Scholar
Watters, T. R., Nimmo, F., and Robinson, M. S. (2005). Extensional troughs in the Caloris basin of Mercury: Evidence of lateral crustal flow. Geology, 33, 669–672.CrossRefGoogle Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A., and Murchie, S. L. (2009a). The tectonics of Mercury: The view after MESSENGER'S first flyby. Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2009.01.025.CrossRefGoogle Scholar
Watters, T. R., Head, J. W., Solomon, S. C., Robinson, M. S., Chapman, C. R., Denevi, B. W., Fassett, C. I., Murchie, S. L., and Strom, R. G. (2009b). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618–621.Google ScholarPubMed
Watters, T. R., Murchie, S. L., Robinson, M. S., Solomon, S. C., Denevi, B. W., André, S. L., and Head, J. W. (2009c). Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth. Planet. Sci. Lett., doi:10.1016/j.epsl.2009.03.040.CrossRefGoogle Scholar
Watts, A. B. (2001). Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.Google Scholar
Weisberg, O. and Hager, B. H. (1998). Global lunar contraction with subdued surface topography. In Origin of the Earth and Moon, Proceedings of the Conference Held 1–3 December, 1998 in Monterey, California. Houston, TX: Lunar and Planetary Institute, p. 54.Google Scholar
Wetherill, G. W. (1988). Accumulation of Mercury from planetesimals. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University Arizona Press.Google Scholar
Wieczorek, M. A. and Phillips, R. J. (2000). The Procellarum KREEP Terrane: Implications for mare volcanism and lunar evolution. J. Geophys. Res., 105, 20 417–20 430.CrossRefGoogle Scholar
Wilhelms, D. E. (1987). The Geologic History of the Moon. Washington, DC: U.S. Government Printing Office.Google Scholar
Willemann, R. J. (1984). Reorientation of planets with elastic lithospheres. Icarus, 60, 701–709.CrossRefGoogle Scholar
Willemann, R. J. and Turcotte, D. L. (1982). The role of lithospheric stress in the support of the Tharsis Rise. J. Geophys. Res., 87, 9793–9801.CrossRefGoogle Scholar
Williams, J.-P., Aharonson, O., and Nimmo, F. (2007). Powering Mercury's dynamo. Geophys. Res. Lett., 34, L21201.CrossRefGoogle Scholar
Williams, K. K. and Zuber, M. T. (1998). Measurement and analysis of lunar basin depths from Clementine altimetry. Icarus, 131, 107–122.CrossRefGoogle Scholar
Wojtal, S. F. (1996). Changes in fault displacement populations correlated to linkage between faults. J. Struct. Geol., 18, 265–279.CrossRefGoogle Scholar
Zhong, S. (1997). Dynamics of crustal compensation and its influences on crustal isostasy. J. Geophys. Res., 102, 15 287–15 299.CrossRefGoogle Scholar
Zuber, M. T. and Aist, L. L. (1990). The shallow structure of the Martian lithosphere in the vicinity of the ridged plains. J. Geophys. Res., 95, 14 215–14 230.CrossRefGoogle Scholar
Zuber, M. T., Solomon, S. C., Philips, R. J., Smith, D. E., Tyler, G. L., Aharonson, O., Balmino, G., Banerdt, B. W., Head, J. W., Johnson, C. L., Lemoine, F. G., McGovern, P. J., Neumann, G. A., Rowlands, D. D., and Zhong, S. (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–1793.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The tectonics of Mercury
    • By Thomas R. Watters, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, Francis Nimmo, Department of Earth and Planetary Sciences, University of California, Santa Cruz
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The tectonics of Mercury
    • By Thomas R. Watters, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, Francis Nimmo, Department of Earth and Planetary Sciences, University of California, Santa Cruz
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The tectonics of Mercury
    • By Thomas R. Watters, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, Francis Nimmo, Department of Earth and Planetary Sciences, University of California, Santa Cruz
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.003
Available formats
×