Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T17:57:23.690Z Has data issue: false hasContentIssue false

13 - Impairments of Memory and Reasoning in Patients with Neuropsychiatric Illness: Disruptions of Dynamic Cognitive Binding?

Published online by Cambridge University Press:  20 May 2010

James A. Waltz
Affiliation:
University of Maryland School of Medicine, Maryland Psychiatric Research Center, P. O. Box 21247, Baltimore, MD 21228
Randall W. Engle
Affiliation:
Georgia Institute of Technology
Grzegorz Sedek
Affiliation:
Warsaw School of Social Psychology and Polish Academy of Sciences
Ulrich von Hecker
Affiliation:
Cardiff University
Daniel N. McIntosh
Affiliation:
University of Denver
Get access

Summary

INTRODUCTION: REPRESENTATION AND PROCESS IN HIGHER LEVEL COGNITION

Decrements in higher level cognitive abilities are a prevalent feature of dementia associated with psychiatric illnesses, such as schizophrenia and major depression; degenerative neurological disorders, such as Alzheimer's disease and Parkinson's disease; and the normal aging process. The kinds of cognitive deficits that are typically associated with these conditions are fairly well characterized through the wealth of neuropsychological studies dealing with each. However, the task of establishing the link between particular forms of pathophysiology associated with each condition and specific cognitive impairments has proved more difficult. A satisfactory resolution of this issue depends, to a large extent, on the ability to describe what individuals can and cannot do cognitively – what kinds of percepts and concepts they can and cannot represent. I will argue that psychological studies of reasoning have attempted to characterize information processing limitations in two ways: (a) by describing the nature and complexity of percepts and concepts manipulated in reasoning, and (b) by specifying their reliance on working memory, which involves the ability to temporarily store and manipulate pieces of information.

The former approach, I contend, has been used to show that differences in reasoning abilities across cognitive developmental stages or phylogeny, as well as reasoning impairments resulting from brain damage in humans, might be explained by the presence or absence of the ability to represent knowledge structures of a given complexity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Arnsten, A. F. T. (2000). Stress impairs prefrontal cortical function in rats and monkeys: Role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. In Uylings, H. B. M., Eden, C. G., Bruin, J. P. D., Feenstra, M. G. P., & Pennartz, C. M. A. (Eds.), Progress in brain research 126: Cognition, emotion and autonomic responses: The integrative role of the prefrontal cortex and limbic structures (pp. 183–192). Amsterdam: Elsevier.Google Scholar
Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.Google ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8). New York: Academic Press.Google Scholar
Bertolucci-D'Angio, M., Serrano, A., Driscoll, P., & Scatton, B. (1990). Involvement of the mesocorticolimbic dopaminergic systems in emotional states. In H. B. M. Uylings, C. G. van Eden, J. P. D. de Bruin, M. A. Corner, & M. G. P. Feenstra (Eds.), Progress in brain research 85: The prefrontal cortex: Its structure, function, and pathology (pp. 405–417). Amsterdam: Elsevier.
Bowers, W. J., Attias, E., & Amit, Z. (1999). Stress enhances the response to reward reduction but not food-motivated responding. Physiology & Behavior, 67, 777–782.CrossRefGoogle Scholar
Brown, D. R. P., Hunter, R., Wyper, D. J., Patterson, J., Kelly, R. C., Montaldi, D., & McCulloch, J. (1996). Longitudinal changes in cognitive function and regional cerebral function in Alzheimer's disease: A SPECT blood flow study. Journal of Psychiatric Research, 30, 109–126.CrossRefGoogle ScholarPubMed
Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97, 404–431.CrossRefGoogle ScholarPubMed
Chajut, E., & Algom, D. (2003). Selective attention improves under stress: Implications for theories of social cognition. Journal of Personality & Social Psychology, 85, 231–248.CrossRefGoogle ScholarPubMed
Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, 17, 391–416.CrossRefGoogle ScholarPubMed
Cheng, P. W., & Holyoak, K. J. (1989). On the natural selection of reasoning theories. Cognition, 33, 285–313.CrossRefGoogle ScholarPubMed
Cronin-Golomb, A., Rho, W. A., Corkin, S., & Growdon, J. H. (1987). Abstract reasoning in age-related neurological disease. Journal of Neural Transmission: Supplement, 24, 79–83.Google ScholarPubMed
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19, 450–466.CrossRefGoogle Scholar
Darke, S. (1988). Effects of anxiety on inferential reasoning task performance. Journal of Personality & Social Psychology, 55, 499–505.CrossRefGoogle ScholarPubMed
Delis, D. C., Squire, L. R., Bihrle, A., & Massman, P. (1992). Componential analysis of problem solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting task. Neuropsychologia, 30, 683–697.CrossRefGoogle Scholar
D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1996). The neural basis of the central executive system of working memory. Nature, 378, 279–281.CrossRefGoogle Scholar
Deutsch, A. Y., & Roth, R. H. (1990). The determinants of stress-induced activation of the prefrontal cortical dopamine system. In Uylings, H. B. M., Eden, C. G., Bruin, J. P. D., Corner, M. A., & Feenstra, M. G. P. (Eds.), Progress in brain research 85: The prefrontal cortex: Its structure, function, and pathology (pp. 367–403). Amsterdam: Elsevier.Google Scholar
Dohrenwend, B. (2000). The role of adversity and stress in psychopathology: Some evidence and its implications for theory and research. Journal of Health and Social Behavior, 41, 1–19.CrossRefGoogle ScholarPubMed
Dunbar, K., & Sussman, D. (1995). Toward a cognitive account of frontal lobe function: Simulating frontal lobe deficits in normal participants. In Grafman, J., Holyoak, K. J., & Boller, F. (Eds.), Annals of the New York Academy of Sciences, Vol. 769: Structure and functions of the human prefrontal cortex (pp. 289–304). New York: New York Academy of Sciences.Google Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257–303.CrossRefGoogle ScholarPubMed
Eberling, J. L., Reed, B. R., Baker, M. G., & Jagust, W. J. (1993). Cognitive correlates of regional cerebral blood flow in Alzheimer's disease. Archives of Neurology, 50, 761–766.CrossRefGoogle ScholarPubMed
Ellenbogen, M. A., Schwartzman, A. E., Stewart, J., & Walker, C.-D. (2002). Stress and selective attention: The interplay of mood, cortisol levels, and emotional information processing. Psychophysiology, 39, 723–732.CrossRefGoogle ScholarPubMed
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23.CrossRefGoogle Scholar
Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331.CrossRefGoogle ScholarPubMed
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.CrossRefGoogle ScholarPubMed
Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2002). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.CrossRefGoogle Scholar
Fuster, J. M. (1989). The prefrontal cortex (2nd ed.). New York: Raven Press.Google Scholar
Fuster, J. M. (1995). Memory in the cerebral cortex: An empirical approach to neural networks in the human and nonhuman primate.Cambridge, MA: MIT Press.Google Scholar
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.CrossRefGoogle Scholar
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306–355.CrossRefGoogle Scholar
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38.CrossRefGoogle Scholar
Gilhooly, K. J., Logie, R. H., Wetherick, N. E., & Wynn, V. (1993). Working memory and strategies in syllogistic-reasoning tasks. Memory & Cognition, 21, 115–124.CrossRefGoogle ScholarPubMed
Goel, V., Gold, B., Kapur, S., & Houle, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293–302.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1996). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London, Series B, 351, 1445–1453.CrossRefGoogle ScholarPubMed
Goldstein, F. C., Green, J., Presley, R., O'Jile, J., Freeman, A., Watts, R., & Green, R. C. (1996). Cognitive estimation in patients with Alzheimer's disease. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 9, 35–42.Google Scholar
Goldstone, R. L., Medin, D. L., & Gentner, D. (1991). Relational similarity and the nonindependence of features in similarity judgments. Cognitive Psychology, 23, 222–262.CrossRefGoogle ScholarPubMed
Grady, C. L., Haxby, J. V., Schapiro, M. B., Gonzalez-Aviles, A., Kumar, A., Ball, M. J., Heston, L., & Rapoport, S. I. (1990). Subgroups in dementia of the Alzheimer type identified using positron emission tomography. Journal of Neuropsychiatry & Clinical Neurosciences, 2, 373–384.Google ScholarPubMed
Grafman, J. (1994). Neuropsychology of the prefrontal cortex. In Zaidel, D. W. (Ed.), Handbook of perception and cognition: Neuropsychology (pp. 159–181). San Diego, CA: Academic Press.Google Scholar
Grafman, J., Sirigu, A., Spector, L., & Hendler, J. (1993). Damage to the prefrontal cortex leads to decomposition of structured event complexes. Journal of Head Trauma Rehabilitation, 8, 73–87.CrossRefGoogle Scholar
Graham, K. S., & Hodges, J. R. (1997). Differentiating the roles of the hippocampal complex and the neocortex in long-term memory storage: Evidence from the study of semantic dementia and Alzheimer's disease. Neuropsychology, 11, 77–89.CrossRefGoogle Scholar
Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research, 58, 455–472.CrossRefGoogle ScholarPubMed
Halford, G. S. (1993). Children's understanding: The development of mental models. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Halford, G. S., Bain, J. D., Maybery, M. T., & Andrews, G. (1996). Induction of relational schemas: Common processes in reasoning and complex learning. Cognitive Psychology, 35, 201–245.CrossRefGoogle Scholar
Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioural and Brain Sciences, 21, 803–831, 860–864.CrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115, 1783–1806.CrossRefGoogle ScholarPubMed
Holyoak, K. J., & Koh, K. (1987). Surface and similarity in analogical transfer. Memory and Cognition, 15, 332–340.CrossRefGoogle ScholarPubMed
Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394, 575–577.CrossRefGoogle ScholarPubMed
Huber, S. J., Shuttleworth, E. C., & Freidenberg, D. L. (1989). Neuropsychological differences between the dementias of Alzheimer's and Parkinson's diseases. Archives of Neurology, 46, 1287–1291.CrossRefGoogle ScholarPubMed
Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In Inui, T. & McClelland, J. L. (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press.Google Scholar
Isenberg, L., Nissen, M. J., & Marchak, L. C. (1990). Attentional processing and the independence of color and orientation. Journal of Experimental Psychology: Human Perception and Performance, 16, 869–878.Google ScholarPubMed
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.Google Scholar
Jonides, J. (1995). Working memory and thinking. In Smith, E. E. & Osherson, D. N. (Eds.), An invitation to cognitive science, Vol. 3: Thinking (2nd ed., pp. 215–266). Cambridge, MA: MIT Press.Google Scholar
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.CrossRefGoogle ScholarPubMed
Kempler, D., Lancker, D., & Read, S. (1988). Proverb and idiom comprehesion in Alzheimer's disease. Alzheimer's Disease and Associated Disorders, 2, 38–49.CrossRefGoogle Scholar
Kimberg, D. Y., & Farah, M. J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior. Journal of Experimental Psychology: General, 122, 411–428.CrossRefGoogle Scholar
Klauer, K. C., Stegmaier, R., & Meiser, T. (1997). Working memory involvement in propositional and spatial reasoning. Thinking & Reasoning, 3, 9–48.CrossRefGoogle Scholar
Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148–151.CrossRefGoogle ScholarPubMed
Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cerebral Cortex, 12, 477–485.CrossRefGoogle ScholarPubMed
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?Intelligence, 14, 389–433.CrossRefGoogle Scholar
Lafleche, G., & Albert, M. S. (1995). Executive function deficits in mild Alzheimer's disease. Neuropsychology, 9, 313–320.CrossRefGoogle Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefGoogle ScholarPubMed
Lupien, S., & Lepage, M. (2001). Stress, memory, and the hippocampus: can't live with it, can't live without it. Behavioural Brain Research, 127, 137–158.CrossRefGoogle Scholar
MacLeod, C., & Donnellan, A. M. (1993). Individual differences in anxiety and the restriction of working memory capacity. Personality & Individual Differences, 15, 163–173.CrossRefGoogle Scholar
Markman, A. B., & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467.CrossRefGoogle Scholar
Martin, A., & Fedio, P. (1983). Word production and comprehension in Alzheimer's disease: The breakdown of semantic knowledge. Brain & Language, 19, 124–141.CrossRefGoogle ScholarPubMed
Mendez, M. F., Doss, R. C., & Cherrier, M. M. (1998). Use of the cognitive estimations test to discriminate frontotemporal dementia from Alzheimer's disease. Journal of Geriatric Psychiatry & Neurology, 11, 2–6.CrossRefGoogle ScholarPubMed
Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.CrossRefGoogle Scholar
Milner, B., & Petrides, M. (1984). Behavioural effects of frontal-lobe lesions in man. Trends in Neuroscience, 7, 403–407.CrossRefGoogle Scholar
Minsky, M. (1975). A framework for representing knowledge. In Winston, P. H. (Ed.), The psychology of computer vision (pp. 95–128). New York: McGraw-Hill.Google Scholar
Mitchell, K. J., Johnson, M. K., Raye, C. L., & D'Esposito, M. (2000) fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130, 621–640.CrossRefGoogle ScholarPubMed
Mogg, K., & Bradley, B. P. (1999). Selective attention and anxiety: A cognitive-motivational perspective. In Dalgleish, T. & Power, M. J. (Eds.), Handbook of cognition and emotion (pp. 145–170). New York: Wiley.CrossRefGoogle Scholar
Morris, R. G., & Baddeley, A. D. (1988). Primary and working memory functioning in Alzheimer-type dementia. Journal of Clinical & Experimental Neuropsychology, 10, 279–296.CrossRefGoogle ScholarPubMed
Munk, M. H., Linden, D. E. J., Muckli, L., Lanfermann, H., Zanella, F. E., Singer, W., & Goebel, R. (2002). Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging. Cerebral Cortex, 12, 866–876.CrossRefGoogle ScholarPubMed
McEwan, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105–122.CrossRefGoogle Scholar
Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.CrossRefGoogle ScholarPubMed
O'Brien, J. T., Eagger, S. A., Syed, G. M., Sahakian, B. J., & Levy, R. (1992). A study of regional cerebral blood flow and cognitive performance in Alzheimer's disease. Journal of Neurology, Neurosurgery & Psychiatry, 55, 1182–1187.CrossRefGoogle ScholarPubMed
Osherson, D., Perani, D., Cappa, S., Schnur, T., Grassi, F., & Fazio, F. (1998). Distinct brain loci in deductive versus probabilistic reasoning. Neuropsychologia, 36, 369–376.CrossRefGoogle ScholarPubMed
Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28, 1021–1034.CrossRefGoogle ScholarPubMed
Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12, 323–330.CrossRefGoogle ScholarPubMed
Perry, R. J., & Hodges, J. R. (1999). Attention and executive deficits in Alzheimer's disease: A critical review. Brain, 122, 383–404.CrossRefGoogle ScholarPubMed
Pillon, B., Dubois, B., Lhermitte, F., & Agid, Y. (1986). Heterogeneity of cognitive impairment in progressive supranuclear palsy, Parkinson's disease, and Alzheimer's disease. Neurology, 36, 1179–1185.CrossRefGoogle ScholarPubMed
Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3, 85–90.CrossRefGoogle ScholarPubMed
Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33, 43–63.CrossRefGoogle ScholarPubMed
Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.CrossRefGoogle ScholarPubMed
Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.CrossRefGoogle ScholarPubMed
Raven, J. C. (1976). Standard progressive matrices: Sets A, B, C, D, & E. Oxford, UK: Oxford Psychologists Press.Google Scholar
Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7, 17–42.CrossRefGoogle Scholar
Roberts, R. J., Hager, L. D., & Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task. Journal of Experimental Psychology: General, 123, 374–393.CrossRefGoogle Scholar
Schank, R., & Abelson, R. (1977). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Shallice, T., & Burgess, P. (1991). Higher order cognitive impairments and frontal lobe lesions. In Levin, H. S., Eisenberg, H. M., & Benton, A. L. (Eds.), Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.Google Scholar
Shallice, T., & Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294–303.CrossRefGoogle ScholarPubMed
Simons, D. J. (1996). In sight and out of mind: When object representations fail. Psychological Science, 7, 301–305.CrossRefGoogle Scholar
Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5–42.CrossRefGoogle ScholarPubMed
Smith, M. L., & Milner, B. (1984). Differential effects of frontal-lobe lesions on cognitive estimation and spatial memory. Neuropsychologia, 22, 697–705.CrossRefGoogle ScholarPubMed
Stefurak, D. L., & Boynton, R. M. (1986). Independence of memory for categorically different colors and shapes. Perception & Psychophysics, 39, 164–174.CrossRefGoogle ScholarPubMed
Tohill, J. M., & Holyoak, K. J. (2000). The impact of anxiety on analogical reasoning. Thinking & Reasoning, 6, 27–40.CrossRefGoogle Scholar
Toms, M., Morris, N., & Ward, D. (1993). Working memory and conditional reasoning. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 46, 679–699.CrossRefGoogle Scholar
Treisman, A. M. (1992). Perceiving and re-perceiving objects. American Psychology, 47, 862–875.CrossRefGoogle ScholarPubMed
Treisman, A. M., Sykes, M., & Gelade, G. (1977). Selective attention and stimulus integration. In Dornic, S. (Ed.), Attention and performance VI (pp. 333–361). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411, 953–956.CrossRefGoogle ScholarPubMed
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Back, C., McPherson, S., et al. (2004). Relational integration and executive function in Alzheimer's disease. Neuropsychology, 18, 296–305.CrossRefGoogle ScholarPubMed
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., Menezes Santos, M., Thomas, C. R., & Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.CrossRefGoogle Scholar
Waltz, J. A., Lau, A., Grewal, S., & Holyoak, K. J. (2000). The role of working memory in analogical reasoning. Memory & Cognition, 28, 1205–1212.CrossRefGoogle Scholar
Weiss, J. M., & Glazer, H. I. (1975). Effects of acute exposure to stressors on subsequent avoidance–escape behavior. Psychosomatic Medicine, 37, 499–521.CrossRefGoogle ScholarPubMed
West, R., & Alain, C. (2000). Evidence for the transient nature of a neural system supporting goal-directed action. Cerebral Cortex, 8, 748–752.CrossRefGoogle Scholar
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×