Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-23T16:27:54.832Z Has data issue: false hasContentIssue false

8 - Sensitivity Analysis in Mechanistic Study and Model Reduction

Published online by Cambridge University Press:  04 May 2010

Arvind Varma
Affiliation:
University of Notre Dame, Indiana
Massimo Morbidelli
Affiliation:
ETH Zentrum, Switzerland
Hua Wu
Affiliation:
Ausimont Research and Development Center, Italy
Get access

Summary

Detailed or rigorous kinetic models, consisting of a large number of elementary reactions, are used increasingly to simulate complex reacting processes. An example is given in Chapter 7, where, using detailed kinetic models, we predicted the explosion limits of hydrogen-oxygen mixtures. The main advantage of a detailed versus a simplified or empirical kinetic model is its wider operating window. In other words, detailed models generally describe the kinetics of complex processes for a larger range of operating conditions, while simplified models can be used only for specific conditions. Moreover, detailed models are able to provide proper estimation of the radical concentrations involved in complex processes. Thus, detailed kinetic modeling is an important tool for the analysis and design of complex reacting systems.

A related aspect of detailed kinetic models is that, although they may provide satisfactory simulations of experimental results, their complexity often prevents the understanding of the key features of a process. For example, when using detailed kinetic models, it is often difficult to identify the main reaction paths in a complex reacting system.

Simplified kinetic models, on the other hand, offer several advantages in practical applications. A complex reacting (e.g., combustion) process typically involves a few hundreds of elementary reactions, and hence includes several hundred kinetic parameters. This is true not only for the combustion of complex fuels but also for simpler ones, such as hydrogen or methane. The computational effort associated with the application of complex kinetic models forces the introduction of very simple models to describe the transport processes in reactors where the reaction takes place (e.g., plug-flow or perfectly mixed).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×