Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T23:50:56.974Z Has data issue: false hasContentIssue false

Introduction

from PART III - DIFFUSION

Published online by Cambridge University Press:  06 July 2010

Andrew Bennett
Affiliation:
Oregon State University
Get access

Summary

A principal objective of any theory of fluid motion is the prediction of the spread of matter or “tracer” within the fluid. The problem is trivial for the fluid particles themselves in steady flow: they follow streamlines. It is nontrivial if the motion is time dependent, or if the tracer is dissolved in the fluid but diffusing through it. The time dependence of general interest is turbulence. The next four chapters develop a coherent framework for considering inhomogeneous and nonstationary turbulence, with elaboration in detail for the homogeneous, stationary and incompressible case, excluding and including tracer diffusion. Applications to the spread of phytoplankton are of special interest to oceanographers; these marine organisms are modeled as reacting tracers having nonlinear reaction rates. Absolute dispersion is considered first. This is the problem of predicting the path of a single fluid particle, or the path of the centroid of a cluster of particles, in turbulent flow. Turbulence being conceived as a random process, the problem is the prediction of the probability distribution function or pdf for the particle path. The mathematical difficulty is the closure of the infinite heirarchy of moments of the nonlinear kinematics, that is, the relating of certain high-order moments of particle displacement to low-order moments. There are any number of workings of this task in the literature, most of which close at second order, that is, second moments are related to first.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Andrew Bennett, Oregon State University
  • Book: Lagrangian Fluid Dynamics
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511734939.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Andrew Bennett, Oregon State University
  • Book: Lagrangian Fluid Dynamics
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511734939.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Andrew Bennett, Oregon State University
  • Book: Lagrangian Fluid Dynamics
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511734939.013
Available formats
×