Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T11:32:44.216Z Has data issue: false hasContentIssue false

9 - Representation of 3D action space during eye and body motion

from Part II - Motion and navigation in 3D

Published online by Cambridge University Press:  05 August 2011

W. Pieter Medendorp
Affiliation:
Radboud University Nijmegen
Stan Van Pelt
Affiliation:
Radboud University Nijmegen
Laurence R. Harris
Affiliation:
York University, Toronto
Michael R. M. Jenkin
Affiliation:
York University, Toronto
Get access

Summary

Introduction

Perhaps the most characteristic aspect of life, and a powerful engine driving adaptation and evolution, is the ability of organisms to interact with the world by responding adequately to sensory signals. In the animal kingdom, the development of a neural system that processes sensory stimuli, learns from them, and acts upon them has proven to be a major evolutionary advantage in the struggle for existence. It has allowed organisms to flee danger, actively search for food, and inhabit new niches and habitats at a much faster pace than ever before in evolutionary history.

The more complex animals became, the more extensive and specialized became their nervous system (Randall et al., 1997). Whereas some simple invertebrates such as echinoderms lack a centralized brain and have only a ring of interconnected neurons to relay sensory signals, vertebrates such as mammals have developed a highly specialized neural network, consisting of a central and a peripheral nervous system, in which each subunit has its own functional properties in controlling the body. While the spinal cord and brainstem are involved in controlling automated, internal vegetative processes such as heartbeat, respiration, and reflexes, the prosencephalon (the forebrain, containing the neocortex) has specialized in so-called higher-order functions, such as perception, action, learning, memory, emotion, and cognition (Kandel et al., 2000). The specialization of the neural control of movement is a major feature that distinguishes primates from other animals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×